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1
Introduction

1.1 Introduction

These days, society is becoming more and more reliant on high-speed data
communication. Broadband internet, high definition digital television and
telephone services are all part of nearly everybody’s daily life – and our use
of these resources is ever increasing. New applications are popping up on a
daily basis, with internet users’ hunger for video-on-demand (like YouTube),
interactive television, and file sharing services creating an enormous demand
for data bandwidth. In many places, it is now already possible to have an
optical fiber connection directly into your living room, offering a bandwidth
of 100 megabit per second or more.

All this data traffic needs to be transported to the correct location. The
majority of this transport is done on optical fibers [20], [83]. These fibers are
made of special glasses, and are able to guide light – even around bends, see
Figure 1.1 – for great distances; typical optical fibers (e.g. Corning SMF28e
[19]) lose less than 5% power over a distance of one kilometer. The light
travelling through such fibers can be modulated – switched ’on’ and ’off’ –
at very high rates, and thus digital information can be sent down the fiber
to a receiver.

As a matter of fact, an optical fiber has an enormous capacity for data
transport. If all available capacity could be used, a single optical fiber would
be more than sufficient to handle all traffic that flows through AMS-IX
[1], the main Dutch Internet Exchange. However, due to limitations of the
electronic chips and the devices that modulate the light, it is not possible to
directly use all that capacity. For this reason, a trick is employed: Multiple
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Figure 1.1: Optical fiber, illuminated by a red laser. Image source

www.wikipedia.org, user Hustvedt.

colours of light are modulated independently and sent down the fiber. You
can compare this with those silly 3D glasses with red and green lenses: one
eye only sees the red image on the screen, and the other sees only the green
one; their combination tricks our mind into seeing a 3D image. The red
image on the screen is thus one ’channel’ of information, while the green
one is another channel. In exactly the same way, different colours can be
transmitted through a fiber, where each colour carries its own information
stream.

In a network of optical fibers, the data has to be directed to the correct
end user; you do not want your neighbour to receive information that was
meant for you. It may be desirable to send one colour of light along one
channel, and another colour along the other channel. To do this steering
of light, optical chips may be employed. You can compare optical chips to
electronic microchips – except the former process light (photons) instead of
electrons.

Another application area of optical chips is sensing. The speed of light
may be affected by certain antibodies or chemicals in a material, e.g. when
a receptor layer selectively captures certain bio-molecules. Since in optical
chips, the interaction of the light with these materials can be measured
very precisely and in a minute volume, only tiny amounts of blood or other
fluids or gases are needed to perform an analysis. This allows for faster,
more accurate, cheaper and more portable medical diagnostic equipment.
Such equipment is especially important in developing countries; cheap and
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portable equipment can be deployed at many more hospitals and clinics
than what is currently possible.

1.2 Optical chips

Light impinging on the boundary between two materials is partially trans-
mitted and partially reflected, depending, among others, on the refractive
index (which relates to the speed of light in that material) of the two mate-
rials. In certain cases, the light is even completely reflected – which means
that if two of these interfaces are placed parallel to each other, light can be
trapped in-between. This phenomenon of total internal reflection can also
be used to trap and guide light in three dimensions: so-called waveguides
with proper dimensions guide light without intrinsic losses. If designed cor-
rectly, these optical waveguides can even steer light around tiny bends –
with a radius of curvature smaller than the thickness of a human hair [87].

Figure 1.2: Artist’s impression of a complex optical chip. Image source

www.infinera.com.

Chips containing structures that may guide and manipulate light are
called (integrated) optical chips; for examples see Figures 1.2 and 1.3. In
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Figure 1.3: Microscope picture (left) and photograph (right) of an optical
chip. The rings guide certain wavelength to different output fibers. The
gold structures are used to heat up the rings, allowing to dynamically change
the wavelengths they transmit. Image source PhD Thesis E.J. Klein 2007

[56].

such chips, functionality is created by manipulating light on a micro- or
nanoscale. Light is guided in tiny dielectric or semiconductor waveguides
[101], [88], [71], [12], [75], much like in optical fibers. Coming from a laser or
from an optical fiber, the light propagates along the channels on the surface
of the optical chip. This guidance and well-chosen layout of waveguides
provide passive functionality – e.g. splitting the power or filtering the light
– and furthermore, the guides may be used to transport the light to the
areas of the chip where interaction with the outside world takes place. The
two main areas of application of optical chips are sensors [8] and telecom-
munication.

1.2.1 Telecommunication

At the ends of the optical fibers used in telecommunication networks, in-
tegrated optical components may be used to modulate, combine or route
signals. Their main application in the backbone network – the high-speed
links between data centers or internet providers – is in so-called Wavelength
Division Multiplexing (WDM). In WDM, different signals are transmitted at
different wavelengths (colours) of light, as explained above. Many different
data streams are encoded at different wavelengths, all of which are combined
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Figure 1.4: Schematic of Wavelength Division Multiplexing. Multiple
colours of light, each carrying distinct data, are transmitted on the same
optical fiber.

into one optical signal that is sent through the optical fiber (Figure 1.4).
This combining, and, at the other end of the fiber, the demultiplexing of
the signals, is done in integrated optical chips. These chips are structured
to have a strongly wavelength dependent response, routing different wave-
lengths into different output channels or from different input channels into
the same output channel.

Some examples of telecommunications building blocks, (pieces of) which
will serve as examples in this thesis, are Arrayed Waveguide Gratings, Mach-
Zehnder interferometers, spot size converters, and photonic crystal based
filters. In an Arrayed Waveguide Grating (Figure 1.5), the light is divided
over many waveguides, which introduce a very well-defined wavelength-
dependent phase difference. Due to this phase difference, the phase front
experiences a wavelength-dependent tilt and light of different wavelengths
gets focused on different output waveguides. If the device is used the other
way around, with many input guides containing the correct wavelengths,
all these input signals get focused on the same output waveguide. For the
design of Arrayed Waveguide Gratings, one needs a very accurate determi-
nation of the propagation constant of the light in all waveguides.

A Mach-Zehnder interferometer (Figure 1.6) is a device in which the
input light is split into two branches. One of the branches may be exposed
to the environment, or be modified by an electrical voltage, which slows
down or speeds up the light passing through it. At the position where the
two branches are combined again, the difference between the two branches
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Figure 1.5: Arrayed Waveguide Grating: Incoming light (1) is divided (2)
over the many central waveguides (3), causing a wavelength-dependent tilt at
the output of those waveguides; thus different colours are focused in (4) on
different output waveguides (5). Image source www.wikipedia.org, user

Dr. Schorsch.

means that the two waves are not in phase anymore – which has a direct
effect on the transmitted power. Mach-Zehnder interferometers may be used
in both telecommunication – to modulate the intensity of a laser beam, for
example – and in sensors, where the phase difference induced in one of the
branches can be a measure of some chemical concentration. More on sensors
follows later.

In many material systems, the waveguides that are most appropriate
for the main function of the optical chip are not well suited for connection
to an optical fiber. For example, in silicon nitride stripe waveguides one
wants to be able to make sharp bends with minimal losses; these sharp
bends are needed to minimize the total chip size. To this end, a relatively
thick guide is needed. The size of the optical fields in such a high-contrast
waveguide, however, is much smaller than in a standard optical fiber as used
in telecommunication systems. Since the loss at the transition between the
fiber and the waveguide depends on how closely alike the two fields are, they
have to be matched as well as possible. The optical waveguide field can be
expanded to match the fiber by slowly thinning (’tapering’) the waveguide.
Such structures that convert the field profile from one waveguide to another
are called spot size converters.

Photonic crystals (see e.g. Figure 1.7) are structures in which the prop-
erties of the material vary periodically on length scales smaller than the
wavelength of the light [51], [111], [81]. The behaviour of light in photonic
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Figure 1.6: Mach-Zehnder interferometer with one arm exposed to a liquid.
Changes in the refractive index of the liquid, caused by e.g. varying concen-
trations of sugar in water, only affect that arm, modifying the transmitted
power of the interferometer.

Figure 1.7: Photonic crystal waveguide: The light is guided in part due
to the periodic arrangement of holes in the slab. The response of such
devices can be strongly wavelength-dependent. Image source C. Helgert,

Institute of Applied Physics, University of Jena, Germany.
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crystals is very strongly wavelength dependent; for some wavelengths, it is
even impossible for the light to propagate through the crystal. The wave-
length dependence of these structures is used for wavelength filtering and
routing. Furthermore, photonic crystals tend to be very sensitive to external
influences, and thus carry great potential for optical sensing.

1.2.2 Sensors

Integrated optical waveguides have the property that light propagating
through them is mostly confined to the waveguide core with evanescent
fields localized in the direct neighbourhood of the core. This makes light
sensitive only to changes in materials very close to the waveguide core (see
Figure 1.8). Minute quantities or very small concentrations of chemicals or
biological antibodies can be accurately detected by integrated optical sen-
sors (see Figure 1.9). Commercially available sensors can measure down to
a refractive index change of about 10−8 [72], which corresponds to a sugar
concentration of only about 0.7mg in a liter of water. One may use this
localized sensitivity to probe tiny volumes of biological or environmental
samples in so-called Lab on a Chip applications, which allow for fast and
cheap diagnosis of diseases or constant online measurements of hazardous
gases.

Figure 1.8: Biosensor waveguide structure: The propagation characteristics
of the light in the waveguide are modified by antibodies that are captured by
the receptors; only a very thin layer of material near the waveguide affects
the light.

Furthermore, the high sensitivity of the response of guided light to ex-
ternal influences can also be used in telecommunication devices. As one
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Figure 1.9: A broadband Mach-Zehnder biosensor [55]. Light with a wide
spectrum is coupled into the chip. The light is split into two branches, one
of which is exposed to water containing a certain concentration of specific
molecules that can bond to the surface, modifying the propagation charac-
teristics of the light. The difference between the two branches causes an
intensity difference in the output light, which is analyzed by means of a
spectrometer. Changes in the spectrum can be correlated with changes in
the concentration.

example, guided light can interact with nanomechanically actuated can-
tilevers in order to switch or route the optical signal (Figure 1.13). Another
example [73] shows how applying an external force to a photonic crystal,
stretching it and thus modifying its period, significantly changing its wave-
length response, light can be dynamically blocked or transmitted.

1.2.3 Technology

Optical chips are mostly fabricated [54] using technologies borrowed from
the electronic IC industry. A flat substrate of e.g. silicon, indium phosphide,
or fused silica glass is taken as a base, on which layers of materials with
different optical properties are grown. These material layers are structured
into the desired shapes by means of photolithography and etching steps; for
an example process flow see Figure 1.10. Due to this fabrication technology,
the light in optical chips is made to propagate mainly along the directions
parallel to the initial substrate.
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Figure 1.10: Example fabrication steps for an optical waveguide. On top of
a substrate wafer (a), a buffer layer (to optically isolate the waveguide from
the substrate) is deposited or grown (b). A waveguide layer is deposited
on top of the buffer (c), and a photoresist layer is deposited on top of it
(d). After masking and exposing the photoresist, a development step (e)
transfers the mask into the photoresist. Subsequently, an etching step defines
the waveguides (f). The photoresist is removed (g), and the waveguide is
covered with a cladding material (h).

1.3 Simulations

In order to design optical chips, and especially to design devices that can be
fabricated with reasonable yields, accurate but fast simulations [49], [99],
[27] are of utmost importance.

However, unfortunately, in many cases the amount of calculation that
needs to be performed to design a device has gone up faster than the in-
crease in computer processor speeds can handle. Such an increase in nec-
essary computational power is in part due to the increased complexity of
the devices, in part due to the more advanced and accurate simulators, and
in part due to the fact that fabrication data is at hand – and thus the ef-
fects of fabrication variations on the yield of a device can – and should –
be calculated. In fact, most actual devices are far too large – with small
feature sizes – to simulate even one configuration at a time on a personal
computer; one would require supercomputers. So the computational tools
need to become smarter in order to be able to properly design a photonic
device.
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This thesis describes simulation methods that attempt to decrease the
computational effort by reducing the dimensionality of the calculations. In
essence, this involves the use of a pre-defined set of basis functions in one
spatial direction, and deriving equations in the other dimension(s) through
a variational procedure.

This subsection will first show the Maxwell’s equations and their specific
form for the physical systems considered in this thesis; then, mode and scat-
tering problems are described along with their mathematical formulations,
and brief references to existing related alternative approaches. Finally, a
short introduction into the main concepts of the work in this thesis will be
given: the variational formalism and expansions into slab eigenmodes.

1.3.1 Maxwell’s equations

The well-known macroscopic Maxwell’s equations are a set of fundamental
equations that describe the behaviour of electromagnetic fields1:

∇× E(x, y, z, t) = −∂B

∂t
(x, y, z, t), (1.1)

∇×H(x, y, z, t) =
∂D

∂t
(x, y, z, t) + J(x, y, z, t), (1.2)

∇ ·D(x, y, z, t) = ρ(x, y, z, t), (1.3)

∇ ·B(x, y, z, t) = 0, (1.4)

where E is the electric field, H is the magnetic field, D is the dielectric
displacement, and B is the magnetic induction. Finally, ρ is the free charge
density and J is the free current density.

The relations between D and E, and between B and H, are:

D(x, y, z, t) = ε0E(x, y, z, t) + P(x, y, z, t) (1.5)

B(x, y, z, t) = µ0(H(x, y, z, t) + M(x, y, z, t)), (1.6)

where µ0 is the magnetic permeability of vacuum, ε0 is the electric permit-
tivity of vacuum, P is the polarization and M is the magnetization. We
specialize here to simulations where only linear, isotropic, nonmagnetic, and

1Cartesian coordinates x, y, z will be used throughout this thesis. t denotes the time
variable. To avoid misunderstandings caused by the re-use of symbols, for this chapter
we write out all function arguments explicitly.
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lossless materials2 are present. Eqns. (1.5) and (1.6) then reduce to:

D(x, y, z, t) = ε0ε(x, y, z)E(x, y, z, t) (1.7)

B(x, y, z, t) = µ0H(x, y, z, t), (1.8)

where ε is the spatially dependent relative electric permittivity.
If we now also restrict to cases where free currents and charges are

absent, Maxwell’s equations reduce to:

∇× E(x, y, z, t) = −µ0
∂H

∂t
(x, y, z, t), (1.9)

∇×H(x, y, z, t) = ε0ε(x, y, z)
∂E

∂t
(x, y, z, t), (1.10)

∇ · (ε0ε(x, y, z)E(x, y, z, t)) = 0, (1.11)

∇ ·H(x, y, z, t) = 0. (1.12)

In this thesis we will work only in the frequency domain. All field
components in Maxwell’s equations are oscillating harmonically in time
as exp(iωt) with a single frequency ω, usually specified by the vacuum
wavelength λ = 2π

k
= 2πc

ω
, for vacuum wavenumber k and vacuum speed

of light c = 1√
ε0µ0

. The first two Maxwell’s equations, now for E(x, y, z)

and H(x, y, z), can then be written in a simplified form, using the common
conventions for the complex notation for time harmonic fields:

∇× E(x, y, z) = −iωµ0H(x, y, z), (1.13)

∇×H(x, y, z) = iωε0ε(x, y, z)E(x, y, z). (1.14)

By taking the divergence of the curl equations (1.13) and (1.14) one
derives the other two divergence equations (1.11) and (1.12), which are
usually referred to as complementary Maxwell’s equations. Therefore, in
the following it will be sufficient to consider only the curl equations.

1.3.2 Scattering

In scattering problems, one is interested in what happens to the light for a
given input. For example, an optical fiber launches light into a waveguide
of an optical chip – how does that light propagate along the chip, how much
power ends up in which other waveguides, and how much is reflected back
toward the fiber?

2Note, however that most of the theory also could be applied to more general situa-
tions.
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Henry Uranus, IOMS Group, Utwente Feridun Ay, IOMS Group, Utwente Lasse Kauppinen, IOMS Group, Utwente

Figure 1.11: Examples of structures for which scattering simulations are
necessary; light comes in from the direction of the arrows, and one wants
to know where it goes. From left to right: A microring resonator, which
exhibits strongly wavelength-dependent phase shifts of the light; a grating,
which selectively reflects certain wavelength ranges; and a photonic crystal
waveguide.

Scattering simulations can be performed in either the time domain or
in the frequency domain. In the time domain, the full Maxwell’s equations
need to be solved. The most-used method for this is the so-called Finite
Difference Time Domain method [97]. The great advantage of time domain
calculations is that one may Fourier transform the results in order to obtain
a full spectral response in one run. A disadvantage, however, is that the
calculations tend to be very slow and memory-consuming. In the frequency
domain, one calculates the response of the system to one single frequency
of light. Usually, this can be done faster than time domain simulations –
but of course, for each frequency of interest, one needs to do a separate
calculation. This thesis deals only with frequency domain simulations.

For 3D vectorial scattering problems the full frequency domain Max-
well’s equations (1.13), (1.14) have to be solved. For 2D scattering problems,
in which neither the fields nor the structure depend on z, the principal
component of the transversal electric (TE) field, Ez, satisfies the equation

∆Ez(x, y) + k2ε(x, y)Ez(x, y) = 0, (1.15)

while the principal component Hz, of the transversal magnetic (TM) field,
is the solution of

∇ ·
(

1

ε(x, y)
∇Hz(x, y)

)

+ k2Hz(x, y) = 0. (1.16)
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Scattering Solvers

Simulations of scattering problems can be classified in three main categories:
Unidirectional, bidirectional, and omnidirectional methods.

Unidirectional methods

In many applications, the flow of light is designed to run mainly in one
direction; reflections are assumed to be insignificant, and the angle of the
propagation of the light with respect to the ’simulation direction’ is not
very large. Under these assumptions, a unidirectional approximation of the
Maxwell’s equations may be used, in which the problem becomes an initial
value problem; given the field at one end of the calculation window, the al-
gorithms propagate this field to the other side in one go. This simplification
to a unidirectional problem greatly decreases the amount of computational
effort that is needed. However, of course, it can only be applied to a limited
class of problems. The most important example of unidirectional simulation
methods is the Beam Propagation Method [57], [63].

Bidirectional methods

In devices in which reflections are important, but the light is still expected
to mainly travel along two opposite directions, bidirectional algorithms may
be applied. In many components, reflections happen at a limited number of
discrete places in the design. Bidirectional algorithms can take advantage
of this limited number by performing two separate unidirectional – coun-
terpropagating – simulations everywhere, except at the reflection points,
where the two simulations couple. Examples of bidirectional methods are
the Bidirectional Beam Propagation Method [63], the Bidirectional Eigen-
mode Propagation method [105], [26], and the Method of Lines [77].

Omnidirectional methods

In true omnidirectional methods, there is no preferred direction of the light.
In principle, it may enter from and exit in any direction, which means
that the boundaries of the simulations have to be be made transparent for
outgoing light while still allowing influx to be prescribed. Popular examples
are general purpose numerical approaches, like Finite Element methods,
Finite Difference Frequency and Time Domain methods [97], Eigenmode
Expansion methods [33] and Green’s Function methods [74].
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1.3.3 Mode solving

One of the most common tasks in the design of components is to assess
how light propagates in a straight waveguide. In a straight waveguide,
guided modes may exist which propagate losslessly with a certain propaga-
tion constant along the guide. The propagation constant of the modes is an
extremely important quantity to calculate, since it directly influences the
phase of light passing through the waveguide. Beside the propagation con-
stant, the field profile of a mode (see e.g. Figure 1.12) is also often needed,
since it can be used to estimate how strongly the light’s phase and amplitude
are modified by external influences, and also to determine the approximate
losses in abrupt transitions, such as fiber-to-chip couplers.
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Figure 1.12: All six electromagnetic field components of the fundamental
mode of a box-shaped waveguide.

A waveguide is a system that is uniform along one spatial direction. If
x, y, z are Cartesian coordinates with the z-axis parallel to the waveguide
axis, such a structure is completely characterized by the transversal per-
mittivity distribution ε(x, y). In these structures there exist transverse field
profiles that propagate along the z-axis with propagation constant β, i.e.
for solutions of the form

E(x, y, z) = E(x, y) e−iβz, H(x, y, z) = H(x, y) e−iβz. (1.17)

When β is real, the only z-dependent field variation is a phase factor, while
the field amplitude remains constant. For complex values of β, the am-
plitude increases or decreases exponentially, but the shape of the field is
maintained.

Consequently, the Maxwell’s equations (1.13), (1.14) for the mode profile
components E(x, y) and H(x, y) from (1.17) can be written as follows

ωµ0H(x, y)− iCE(x, y) = −βRE(x, y), (1.18)

ωε0ε(x, y)E(x, y) + iCH(x, y) = βRH(x, y), (1.19)
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with matrices

R =





0 1 0
−1 0 0
0 0 0



 , C =





0 0 ∂y

0 0 −∂x

−∂y ∂x 0



 . (1.20)

Solving the mode equation thus reduces to finding combinations of the trans-
verse field profile E(x, y), H(x, y) and the propagation constant β.

If the index contrast is low, implying that certain derivatives of the index
can be neglected, the following scalar mode equations can be derived: The
principal component of transversal electric (TE) modes, Ey, satisfies the
equation

∆Ey(x, y) + k2ε(x, y)Ey(x, y) = β2Ey(x, y), (1.21)

while for TM polarized modes the principal magnetic field component is
governed by the equation:

∇ ·
(

1

ε(x, y)
∇Hy(x, y)

)

+ k2Hy(x, y) = β2 1

ε(x, y)
Hy(x, y). (1.22)

If one restricts the mode problem (1.18), (1.19) to systems that do not
have any y-dependence, and in which, furthermore, also the solutions do not
depend on y, the resulting equations describe two one-dimensional mode
equations; the two polarizations become completely decoupled: TE polar-
ized modes are described by the eqn.

E ′′
y (x) + k2ε(x)Ey(x) = β2Ey(x), (1.23)

while TM modes are solutions of
(

1

ε(x)
H ′

y(x)

)′
+ k2Hy(x) = β2 1

ε(x)
Hy(x). (1.24)

Over the years, many algorithms for mode solving have been devel-
oped, ranging from solvers for one-dimensional multilayer waveguides (1D
mode solvers) to advanced fully-vectorial solvers for two-dimensional cross-
sections.

An example of a 1D mode solving algorithm is the Transfer Matrix
Method [38], which is very efficient for waveguides with piecewise constant
permittivity. Another option is to use a numerical discretization like the
Finite Element Method, which is especially advantageous if the permittivity
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profile of the waveguide is not piecewise constant or if the coefficients in the
mode equations are not real-valued such that propagation constants have
to be identified in the complex plane rather than on the real axis.

For 2D cross-sections, major examples of mode solvers are purely numer-
ical methods like the Finite Difference, Finite Element solvers [50] or the
Method of Lines [77], mode expansion methods like the Film Mode Match-
ing Methods [95], boundary methods like the Boundary Element Method
and the Wave Matching Method [60], the Spectral Index Method [67], and
more approximate methods like the Effective Index Method [101], [64], [2].
All these methods have their own strengths and weaknesses with respect to
speed, memory use, accuracy, and applicability. More on this subject can
be found in [101], [53], [59], [82], [102] and [16].

1.3.4 Effective Index Method

As stated above, propagation of light in optical chips happens mainly in
the plane parallel to the substrate. Because of these preferred directions, a
lot of simulation methods treat only those directions, and approximate the
solution in the other direction in some way. The common way to do this is by
means of the Effective Index Method. One calculates the 1D modes of each
vertical cross-section by means of a one-dimensional mode solver, and uses
the propagation constants of these modes in the equations to be solved for
the remaining two dimensions. This procedure is most suitable for frequency
domain simulations; the modes of the cross-sections will be different for all
wavelengths, so in time domain simulations, one would need to take this
into account by having frequency-dependent coefficients [90]. However, if
one is interested only in a small wavelength range, the approximation of
constant coefficients (using e.g. the cross-section mode of the wavelength in
the middle of the interval of interest) can still be good enough.

1.3.5 Variational formulation

Instead of solving the partial differential equations in a direct way, one may
also choose to find the critical points of a functional [101], [31]. Such a crit-
ical point is defined as a solution for which the variational derivative of the
functional with respect to all unknowns vanishes. In principle, this search
for critical points should be over all functions that satisfy the continuity
and boundary conditions of the problem. However, the great advantage of
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working with a variational formalism is that one can restrict the function
space over which to optimize – approximating the solution by a more limited
set of functions. The work in this thesis makes heavy use of this formalism.

For the 3D vectorial scattering problem (1.13), (1.14), the following
functional is used:

F(E,H) =

∫

(

E · (∇×H) + H · (∇×E)− iωε0εE
2 + iωµ0µH2

)

dx dy dz,

(1.25)
while the simpler functionals

F(Ey) =

∫ [

−
∣

∣∇Ey(x, y)
∣

∣

2
+ k2ε(x, y)E2

y(x, y)

]

dx dy (1.26)

for TE polarized light and

F(Hy) =

∫ [

− 1

ε(x, y)

∣

∣∇Hy(x, y)
∣

∣

2
+ k2H2

y (x, y)

]

dx dy (1.27)

for TM polarized light, correspondingly, cover the 2D scattering problems
(1.15) and (1.16).

Solutions of the vectorial mode equations (1.18), (1.19) are critical points
of the functional

F(E,H) =
ωε0〈E, εE〉+ ωµ0〈H,H〉+ i 〈E, CH〉 − i 〈H, CE〉

〈E, RH〉 − 〈H, RE〉 , (1.28)

with inner product 〈A,B〉 =

∫

A∗(x, y) ·B(x, y) dx dy.

For the scalar mode equations (1.21), (1.22), we will use functionals

F(Ey) =

∫ [

−
∣

∣∇Ey(x, y)
∣

∣

2
+ k2ε(x, y)E2

y(x, y)

]

dx dy
∫

E2
y(x, y) dx dy

(1.29)

for TE polarized light and

F(Hy) =

∫ [

− 1

ε(x, y)

∣

∣∇Hy(x, y)
∣

∣

2
+ k2H2

y (x, y)

]

dx dy
∫

1

ε(x, y)
H2

y (x, y) dx dy

. (1.30)

for TM polarized light.
For each of the functionals (1.28), (1.29) and (1.30) the value of the

functional at a critical point is equal to the propagation constant β.
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1.3.6 Expansion into slab eigenmodes

Since the variational formulation allows to restrict the space of functions
over which to optimize the solution, the question arises which space of
functions is a good choice. In this thesis, like in several other methods,
we make use of the fact that most optical chips are fabricated from stacks
of flat layers of some materials. In a uniform layer stack, the solution
can be constructed by means of a superposition of rotated modal solutions
of the one-dimensional mode equation (1.23) or (1.24). Thus, it seems
natural to use those 1D modal solutions as a basis over which to expand
the field in the vertical direction. Most mode expansion methods utilize a
different set of 1D modes in each distinct cross-section, attempting to satisfy
continuity conditions at the interfaces between cross-sections by matching
the amplitudes of the modes on the two sides of an interface appropriately
[4], [95]. Since in general, incomplete sets of modes in two cross-sections
cannot be exactly expressed in each other, the interface conditions are not
fully satisfied.

The work presented in this thesis performs a different form of mode ex-
pansion: Instead of using a local set of modes at each distinct cross-section,
one or more reference cross-sections are chosen, and their modes are used
in the expansion of the field everywhere; see Table 1.1. This immediately
provides continuity of the relevant quantities, even across interfaces between
cross-sections.

The procedure allows to reduce the spatial dimensionality of the problem
at hand by one.

1.4 Outline of thesis

This thesis describes research performed to reduce the dimensionality of
simulations of optical chips. The main ideas, using a variational formulation
combined with mode expansion methods, are applied to both mode solving
and scattering problems.

First, in Chapter 2, the method is implemented for the scalar mode prob-
lem. Then, the theory is expanded to vectorial mode problems in Chapter 3.
In Chapter 4, two-dimensional scattering problems are dealt with. Chap-
ter 5 shows full vectorial three-dimensional simulations, performed using one
or more 1D modes in the expansion. Finally, Chapter 6 gives conclusions
and a short outlook into possible future research.
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PHx(y, z) · XHx(x) = Hx(x, y, z)

Table 1.1: Using mode expansion, the equations to be solved are one spatial
dimension lower than in the original problem. For the scattering problem
depicted here, one slab mode with profile XHx is used; its coefficient PHx

is calculated in the plane. The total 3D solution for Hx may be found by
multiplying the mode profile with its coefficient.

1.5 Embedding

This work has been carried out in the MESA+ Institute for Nanotechnol-
ogy at the University of Twente in the framework of the NanoNed project
TOE.7143 “Optical switching by NEMS-actuated resonator arrays, mod-
elling and simulation tools”, funded by the Dutch Technology foundation
STW. The project was part of a cluster of three projects (TOE.7143,
TOE.7144 and TOE.7145), which together aimed at “unfolding the po-
tential of optical microresonators in photonic crystal structures promising
higher density than is possible with current state of the art photonic in-
tegration”. While colleagues in the more experimentally oriented projects
investigated the design and realization of the mechanical (TOE.7144) and
optical parts (TOE.7145) of the envisioned NanoElectroMechanical Sys-
tems (NEMS) for influencing optical channels, our project was concerned
with theoretical aspects of externally perturbed optical microcavities, and
with the development of computational modelling and simulation tools.

1.6 Publications

Work on this thesis was accompanied by the following publications in in-
ternational refereed journals. The material of these papers constitutes the
basis for the chapters of the thesis.
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Figure 1.13: Design of a nanomechanically actuated optical switch.
The cantilever perturbs the optical field in the photonic crystal cav-
ity, in order to switch light from one output channel to an-
other. Image source MESA+ Institute for Nanotechnology, University

of Twente, The Netherlands.
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2
Scalar mode problems

A variational approach for the scalar modal analysis of dielectric waveg-

uides with arbitrary piecewise constant rectangular 2D cross-sections

is developed. It is based on a representation of a mode profile as

a superposition of modes of constituting slab waveguides times some

unknown continuous coefficient functions, defined on the entire coor-

dinate axis. The propagation constant and the lateral functions are

found from a variational principle. It appears that this method with

one or two modes in the expansion preserves the computational effi-

ciency of the standard effective index method while providing more

accurate estimates for propagation constants, as well as well-defined

continuous approximations for mode profiles. By including a larger

number of suitable trial fields, the present approach can also serve as

a technique for rigorous semivectorial mode analysis.

2.1 Introduction

A variety of methods has been developed for the modal analysis of dielectric
waveguides. References [16], [102], [82] present a detailed overview of the
techniques. Among these, one of the most popular approximate approaches
is the Effective Index Method (EIM) [64]. While being rather intuitive and
computationally very efficient, the inherent approximations limit the range
of its applicability: problems that occur are e.g. undefined effective indices
in a slab region below cut-off and, as a result, only rather heuristically de-
fined field profiles. Several methods exist that in certain respects might be
viewed as improvements of the EIM; we mention the (Film) Mode Matching
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Method (MMM) [76] [95], in which the total field is expanded in the terms
of the local slab modes and later matched across the interfaces, the Spec-
tral Index Method [103], in which the total field is put to zero at certain
distances from the interfaces with strong refractive index contrast and later
expanded in Fourier series, the Weighted Index Method [80], which using a
variational procedure finds the modal field profile as the best separable so-
lution of the wave equation, another technique which corrects the Effective
index Method (CEIM) [100] and is based on a linear combination of three
approximations, and finally the Rigorous Effective Index Method [2], which,
for rib waveguides with outer slices above cut-off, by variational means finds
a simple transcendental equation for the propagation constant.

In this chapter we propose a Variational Mode Expansion Method
(VMEM), which uses modes of the constituting waveguides in the repre-
sentation of the field not only in the corresponding slab, but in the whole
waveguide. On the basis of these field templates, approximations for guided
modes are then derived by consistently applying a variational restriction
procedure. A characteristic feature of this method is that by using continu-
ous field templates the mode field profiles that are found are automatically
continuous.

On the one hand, if one or two modes are used in the expansion this
method can be viewed as an alternative approach for improvement of the
EIM, preserving its computational efficiency. On the other hand, by includ-
ing a large number of suitable basis fields, the present approach can also
serve as a technique for rigorous semivectorial mode analysis. In that case
the MMM (restricted to scalar/semivectorial calculations) and the present
VMEM appear to be quite similar, because both methods are based on ex-
pansion into slab modes. Still there are several differences. First, in the
MMM the eigenmodes of each slice are used for the representation of the
field of only that particular slice, while in VMEM they also contribute to
the solution on all other slices. Second, due to the specific field template the
VMEM field profiles are automatically continuous (even with only one mode
in the expansion), contrary to the MMM solutions. And third, the VMEM
is rigorously derived from a variational principle, rather than by employing
projection techniques as is commonly seen in the MMM. The variational
background of the VMEM leads to certain properties of the solution, e.g. a
monotonous convergence of the propagation constants.

The chapter is organized as follows. In the next section we put the
problem of finding guided modes in a variational form. In section 2.3 the
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theory behind the VMEM is outlined. Section 2.3.2 comments on the rela-
tion of the present approach with equations familiar from the ”standard”
EIM. Results of calculations for a series of waveguide structures including
several benchmark examples are given in section 2.4. Finally, in section 2.5
conclusions are presented. In view of the fact that the formulation of the
VMEM is similar for both TE and TM polarization, the general theory will
be provided only for the former, while the equations which differ in the case
of TM polarization will be given in the appendix.

2.2 Variational form of the mode problem

Consider a z-invariant dielectric waveguide given by a piecewise constant
refractive index distribution n(x, y) on its cross-section Ω. We are searching
for nontrivial solutions of the scalar TE mode equations for the dominant
electric field component E = Ey(x, y):

∆E + k2n2(x, y)E = β2E, (x, y) ∈ Ω (2.2.1)

in the form of profiles, propagating in the z-direction with propagation
constant β at given vacuum wavelength λ = 2π/k.

There are two cases to be distinguished. On the one hand, if the com-
putational window covers the entire cross-section plane Ω = R

2 a solution
of Eq. (2.2.1) should be a continuous square integrable function on R

2. On
the other hand, for a rigorous analysis, the computational window can be
restricted to be bounded in the x-direction, x ∈ [x0, x1], while it remains to
be unbounded in the y-direction. In this case the nullity on the boundaries
x = x0 and x = x1 of a solution of Eq. (2.2.1) is required, so x0 and x1

should be far enough away from the structure to not influence the results
significantly.

Solutions of (2.2.1) can also be formally found as critical points of the
functional

F(E) =

∫ [

−
∣

∣∇E(x, y)
∣

∣

2
+ k2n2(x, y)E2(x, y)

]

dx dy
∫

E2(x, y) dx dy

. (2.2.2)

The values of this functional at stationary points are equal to the propaga-
tion constants squared β2. In case Ω is bounded in x-direction the critical
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points should be searched in the set of functions that vanish on the bound-
ary; this is included as an extra condition.

The variational viewpoint permits a few direct conclusions concerning
the influence of the computational window and the sets of trial functions
[12]. Namely, let β2

s be the highest critical value of the functional (2.2.2)
over the set of all functions C0(Ωs), continuous functions defined on the
computational domain Ωs with zero on its boundary. Then by increas-
ing the computational domain Ωb ⊃ Ωs and taking the corresponding set
C0(Ωb) ⊃ C0(Ωs), the highest critical value β2

b , found from (2.2.2), can only
increase: β2

b ≥ β2
s . Consequently, with increasing computational domain,

the approximation of the propagation constant of the fundamental mode
will approach its exact value from below.

Next, let Ω be a fixed domain and let β2
Ω,E1

and β2
Ω,E2

be the principal
critical values of the functional (2.2.2) considered over the sets of the func-
tions E1 and E2 correspondingly, defined over domain Ω. If E1 ⊂ E2, then
from the principle of eigenvalue comparison it follows that β2

Ω,E1
≤ β2

Ω,E2
. In

other words, by increasing the number of trial functions on the same domain
the approximation value for the propagation constant of the fundamental
mode can only increase.

2.3 Variational mode expansion method

Upon a division of the waveguide cross-section into r y-homogeneous slices
S1, . . ., Sr with refractive index distribution n1(x), . . . , nr(x), the principal
field component E = Ey(x, y) is represented as a superposition of TE modes
Xi(x) of the constituting slab waveguides, times some unknown continuous
coefficient functions Yi(y):

E(x, y) =
N
∑

i=1

Xi(x)Yi(y). (2.3.3)

Fig. 2.1 shows an example and introduces the Cartesian axes x, y.

Note that functions Yi(y) are defined on the whole y-axis, which implies
that modes Xi(x) are relevant for the field in the whole waveguide. In the
section 2.3.1 we will explain the process of selecting modes Xi(x), while here
we describe the method of finding the coefficient functions.
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Figure 2.1: Sample geometry: rib waveguide. In this case the structure
can be divided by vertical lines at y1, y2 into three slices S1, S2, S3 with ho-
mogeneous refractive index distribution along the y-axis. As discussed in
section 2.2, the mode problem will be considered on the entire x-axis, or,
alternatively, on a computational window x ∈ [x0, x1].

Restricting the functional (2.2.2) to the trial field (2.3.3) we arrive at
the new problem of finding the critical points {Y1, . . . , YN} of the functional

F(Y1, . . . , YN ) =

∫ [

−
∣

∣∇
(

N
∑

i=1

Xi(x)Yi(y)
)∣

∣

2
+ k2n2(x, y)

(

N
∑

i=1

Xi(x)Yi(y)
)2

]

dx dy

∫

(

N
∑

i=1

Xi(x)Yi(y)
)2

dx dy

.

(2.3.4)

Requiring this functional to become stationary leads to a vectorial differ-
ential equation, for the unknown function Y(y) = (Y1(y), . . . , YN(y)) with
the propagation constant β as a parameter, of the form

FY′′(y) + M(y)Y(y) = β2FY(y). (2.3.5)

The matrices F and M are of dimension N ×N and consist of elements

Fg,h =

x1
∫

x0

Xg(x)Xh(x) dx, (2.3.6)

Mg,h(y) =

x1
∫

x0

(

k2n2(x, y)Xg(x)Xh(x)−X ′
g(x)X ′

h(x)
)

dx. (2.3.7)

Note that inside each constituting slice the matrix M does not depend on
y, so in the slice Sj we can denote it as M(j).
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Beyond (2.3.5), for a structure divided into slices, stationarity of (2.3.4)
amounts to interface conditions of continuity of

Y(y) (as an essential condition) (2.3.8)

and
Y′(y) (as a natural condition). (2.3.9)

Consequently the profiles Y now can be found by solving in the each
separate slice Sj the vectorial differential equation with constant coefficients:

(

Y(j)
)′′

+ T(j)Y(j) = β2Y(j), where T(j) = F−1M(j) (2.3.10)

and matching the solutions across the interfaces according to the conditions
(2.3.8) and (2.3.9).

Searching for solutions in the form of Y(j) = exp(µ(j)y)pj, Eq. (2.3.10)
requires that in the j-th slice the values µ(j) and the vectors p(j) satisfy the
eigenvalue problem

T(j)p(j) = η(j)p(j), with η(j) = β2 −
(

µ(j)
)2

(2.3.11)

as eigenvalues and p(j) as eigenvectors, which do not depend on β. Note
that all the µ(j) do. Since the matrix T(j) is of dimension N × N , solv-
ing the eigenvalue problem (2.3.11) yields N eigenvalues η

(j)
1 , . . . , η

(j)
N and

corresponding eigenvectors p
(j)
1 , . . . ,p

(j)
N . From the fact that the matrix F

is symmetric positive definite and the matrix M(j) is symmetric we can
conclude that the matrix T(j) = F−1M(j) has only real eigenvalues. Look-
ing only for exponentially decaying functions towards ±∞, the solution of
(2.3.10) will be

Y =















































Y(j) =
N
∑

i=1

(

a
(j)
i exp(µ

(j)
i y) + b

(j)
i exp(−µ

(j)
i y)

)

p
(j)
i , j = 2, . . . , r − 1

(in the each inner slice);

Y(1) =
N
∑

i=1

di exp(µ
(1)
i y)p

(1)
i (in the left outer slice);

Y(r) =
N
∑

i=1

ci exp(−µ
(r)
i y)p

(r)
i (in the right outer slice),

where all µ
(1)
i and µ

(r)
i must be positive, while in the inner slices the µ

(j)
i can

be complex conjugate pairs. To ensure the former, β must be larger than the
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square root of the highest eigenvalue among η
(1)
1 , . . . , η

(1)
N and η

(r)
1 , . . . , η

(r)
N ,

as it follows from (2.3.11). Moreover, to satisfy the continuity requirements
(2.3.8), (2.3.9) across the interfaces, at least in one of the inner slices Y(j)

must have harmonic behavior, which implies that β must be smaller than
the square root of the highest eigenvalue among those which corresponds to
the inner slices: η

(j)
1 , . . . , η

(j)
N . Thus an interval Iβ for admissible values β is

found.
Still the coefficients a(j),b(j), c and d have to be determined (where to

shorten the notation we put a = [a1, . . . , aN ] etc). If the interface between
slice Sj and Sj+1 is y = y(j), by using the interface conditions (2.3.8) and
(2.3.9) the following system of equations arises:

Y(j)(y(j)) = Y(j+1)(y(j)), (2.3.12)

(

Y(j)(y(j))
)′

=
(

Y(j+1)(y(j))
)′

, j = 1, . . . , r − 1, (2.3.13)

or, in matrix form,
Vf = 0, (2.3.14)

with a vector of all unknown coefficients,

f = [d, a(2), b(2), . . . , a(r−1), b(r−1), c]ᵀ,

and the matrix

V =















Vd Vab
2−

Vab
2+ Vab

3− 0
. . .

0 Vab
(r−2)+ Vab

(r−1)−
Vab

(r−1)+ Vc















,

whose s-th line represents all the continuity conditions at the s-th interface.
The columns of the submatrices can be written as:

Vd(i) =

[

exp(µ
(1)
i y(1))p

(1)
i

µ
(1)
i exp(µ

(1)
i y(1))p

(1)
i

]

, Vc(i) =

[

− exp(−µ
(r)
i y(r−1))p

(r)
i

µ
(r)
i exp(−µ

(r)
i y(r−1))p

(r)
i

]

,

(2.3.15)

Vab
j− =

[

Aj− Bj−
]

, Vab
j+ =

[

Aj+ Bj+

]

,
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where

Aj−(i) =

[

− exp(µ
(j)
i y(j−1))p

(j)
i

−µ
(j)
i exp(µ

(j)
i y(j−1))p

(j)
i

]

, Bj−(i) =

[

− exp(−µ
(j)
i y(j−1))p

(j)
i

µ
(j)
i exp(−µ

(j)
i y(j−1))p

(j)
i

]

,

(2.3.16)

Aj+(i) =

[

exp(µ
(j)
i y(j))p

(j)
i

µ
(j)
i exp(µ

(j)
i y(j))p

(j)
i

]

, Bj+(i) =

[

exp(−µ
(j)
i y(j))p

(j)
i

−µ
(j)
i exp(−µ

(j)
i y(j))p

(j)
i

]

(2.3.17)

for i = 1, . . . , N, j = 1, . . . , r − 1. Propagation constants β are thus
those values from the interval Iβ for which a nontrivial solution of Eq.
(2.3.14) exists, i.e. those for which at least one eigenvalue of V becomes
zero. Corresponding field profiles E(x, y) can be found from Eq. (2.3.3).

2.3.1 Modal basis functions

Let the refractive index distribution in the waveguide within the j-th slice be
nj(x). The corresponding modes are continuous solutions with continuous
derivatives of

X ′′(x) + k2n2
j(x)X(x) = γ2X(x), (2.3.18)

with γ as a propagation constant. There are two cases to be distinguished:

• If the computational window is unbounded, solutions of (2.3.18) must
be square integrable. There is only a finite number of them.

• If the computational window in x-direction is x ∈ [x0, x1], solutions
of (2.3.18) are chosen to be zero at the boundary. There are infinitely
many of them and, moreover, they form a complete discrete set of
functions defined on [x0, x1] with zero Dirichlet boundary conditions.

The detailed process of finding the solutions of Eq. (2.3.18) can be found
e.g. in [101]. Ensuring positive-definiteness of the matrix F requires linear
independence of the trial functions. This means that one should select which
modes X to take into expansion (2.3.3). Obviously a safe choice is to take
a finite set of modes from a single slice. At the same time when taking into
the expansion only a few modes, it is sometimes possible and, as our results
show, beneficial to take also into account modes from other slices.
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2.3.2 Relation with the Effective Index Method

While the equations in section 2.3 appear rather involved, it is instructive
to write them out for a case in which there is only one slab mode in the
expansion. By taking only one term E = X(x)Y (y) in the expansion (2.3.3)
(with X a mode profile of a reference slice; for the rib of Fig. 2.1 this would
typically be the guided mode of the inner slice), according to (2.3.5) the
corresponding equation for the function Y is

Y ′′(y) +

x1
∫

x0

(

k2n2(x, y)X2(x)− (X ′(x))2
)

dx

x1
∫

x0

X2(x) dx

Y (y) = β2Y (y). (2.3.19)

As a slab waveguide mode profile, X satisfies the equation

X ′′(x) + k2n2
r (x)X(x) = γ2X(x) (2.3.20)

for propagation constant γ, where nr is the refractive index profile of the
reference slice. By inserting this equation into (2.3.19) and integrating by
parts, we obtain, after defining the effective index Neff of the mode profile
X of the slice r through γ = kNeff:

Y ′′(y) + k2











N2
eff +

x1
∫

x0

(

n2(x, y)− n2
r (x)

)

X2(x) dx

x1
∫

x0

X2(x) dx











Y (y) = β2Y (y).

(2.3.21)
Hence the equation for the lateral profile function Y as it emerges from

the variational procedure is similar to what is used in the EIM: in the
reference slice one has n(x, y) = nr(x), and the effective index appears to
be the one corresponding to the mode profile X; in other slices this effective
index is modified by the difference between the local permittivity and that
of the reference slice, weighted by the local intensity of the reference mode
profile. This means that even in slices in which there is no local mode above
cut-off, a reasonable ”effective index” can still be defined. Note that this
recipe results directly from the application of the variational procedure; no
heuristics are needed beyond the ansatz (2.3.3).
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2.4 Numerical results and comparisons

In short, the whole numerical procedure of mode finding can be outlined
as follows: find the set of basis modes Xi; calculate matrices Tj and their
eigenvectors and eigenvalues according to Eq. (2.3.11); determine the in-
terval Iβ for admissible values of β; identify values of β from this interval,
for which the matrix V from (2.3.14) has at least one zero eigenvalue; for
each found propagation constant β assemble the corresponding field pro-
file according to Eq. (2.3.3). The validity of the method was checked for
several waveguide structures. It should be mentioned that in all of the fol-
lowing examples our results agree remarkably well with rigorous numerical
finite-element FEMLAB [22] solutions of the Eqs. (2.2.1) or (A-1).

2.4.1 Rib waveguide

A frequently investigated geometry for comparison of mode analysis meth-
ods [102], [60] is shown in Fig. 2.2(a). The structure can be divided into
three slices S1, S2, S3. Inside these slices the refractive index distribution is
homogeneous along the y-axis. Since the first and last slices are equal, we
will take into expansion (2.3.3) only modes from the first and second slices.

(a) (b)

Figure 2.2: Cross-section of a benchmark rib waveguide. Geometrical pa-
rameters: w = 3µm, varying h, H = 1µm, refractive indices: ns = 3.4,
nc = 3.44, ncl = 1.0, operating wavelength λ = 1.15µm. (a) ”Conven-
tional” division into slices, computational window x ∈ [−10, 10]µm; (b) an
alternative division of the rotated structure.

In Fig. 2.3 propagation constants of the fundamental TE and TM modes,
obtained by other methods, are compared to those of the VMEM. As was
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discussed in section 2.2, with enlarging the mode set the propagation con-
stant β increases and thus approaches its exact value from below. Note that
very accurate results compared to the rigorous finite element (FEMLAB)
solutions can be obtained using only 16 modes in the expansion (2.3.3).

Figure 2.3: Effective indices (β/k) of the fundamental TE and TM modes
supported by the waveguide of Fig. 2.2(a) as a function of the rib height
h. EIM: effective index method; FEMLAB: finite element [22] calculations
on a mesh with about 20000 elements and a computational window (x, y) ∈
[−6.5, 2.5]× [−7.5, 7.5] ; VMEM [i,j]: the present method with i and j modes
of slices S2 and S1 correspondingly, used in the expansion (2.3.3).

In Fig. 2.4 we show X, Y and total field profiles of the fundamental TE
modes for the VMEM[1,0], VMEM[1,1] and VMEM[5,1], for h = 0.4µm.
From the Y profiles one can see that in this structure the field in the middle
of the inner slice is dominated by the fundamental mode of the inner slice,
while in the outer slices the field is dominated by the fundamental mode of
the outer slice. Around the interfaces between slices all considered modes
play a significant role; apparently they are all needed to satisfy the inter-
face conditions. From Figs. 2.3 and 2.4 it follows, that including the outer
slice mode significantly improves the estimations of the field profiles as well
as propagation constants, while the higher order modes of the inner slice
mainly seem to smoothen the field around the interfaces.

A division into horizontal layers can be an alternative to the division of
the waveguide cross-section described above, as is shown in the Fig. 2.2(b).
There are four layers S1, S2, S3, S4 with homogeneous refractive index dis-
tribution along the y-axis. Effectively modes only from two layers S3 and
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S4 (alternatively, S1 or S2) are required.
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Figure 2.4: For the rib waveguide structure of Fig. 2.2(a) with h = 0.4µm:
Plot (a) shows the TE mode profiles X of the constituting slab waveguides:
X1 is the fundamental mode of the inner slice S2; X2 is the fundamental
mode of the outer slice S1; X3, X4, X5 and X6 – first, second, third and
fourth order modes of the inner slice S2 correspondingly. Plots (b), (c) and
(d) show Y profiles and plots (b’), (c’) and (d’) corresponding field profiles
of the fundamental TE mode. (b) and (b’) correspond to VMEM[1,0], (c)
and (c’) to VMEM[1,1], and (d) and (d’) to VMEM[5,1].
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In Fig. 2.5 convergence of the effective index of the fundamental TE
mode is shown. Note that for the symmetric structure only symmetric
modes X of slices S3 and S4 have an impact on the field distribution of the
symmetric mode of the whole structure, while antisymmetric will have none
– and the other way around for antisymmetric modes. Therefore only even
modes are used in Fig. 2.5.

2 4 6 8 10 12 14 16
3.4133

3.4134

3.4135

3.4136

3.4137
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β 
/ k

0

L=5µm
L=7µm
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Figure 2.5: Convergence of the effective index (β/k) of the fundamental TE
mode for the rib waveguide of Fig. 2.2(b) (h = 0.4µm) as a function of
the number of even modes from region S3, used in the expansion (2.3.3),
for different sizes of the computational window x ∈ [−L,L]. The number of
even modes from the region S4 (equivalently, S1 or S2), used in the expansion
(2.3.3), is always 5.

Already with a moderate number of 15 + 5 basis fields a satisfactory
convergence in refractive index is achieved, contrary to the results of the
Complex General Fourier Variational Method in [69] where many more basis
modes are needed.

While according to the figure the effective index β/k obtained on a
larger computational window L is always smaller than the effective index
computed with a smaller window for the same number of (different) modes
N , this is not the case when high number of terms are taken into account in
expansion (2.3.3) (the curves cross). As was discussed in section 2.2, when
using the full modal basis sets with increasing computational window the
effective index (propagation constant) of the fundamental mode can only
increase.
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As discussed in section 2.3.2, when taking only one mode into the ex-
pansion (VMEM[1,0]) the resulting equations are still always well-defined.
Contrary to the effective index method, the VMEM produces reasonable
results after the outer slice has gone below cut-off, at very similar compu-
tational cost.

2.4.2 Four evanescently coupled ribs

For the analysis of coupler structures, a basic issue is the accurate determi-
nation of all ”supermode” propagation constants, i.e. fundamental as well as
higher order modes are relevant. While finite difference and finite element
methods can produce rather accurate results, they require large mesh sizes
to cover the waveguide cross-section. The VMEM proves to be applicable
for this type of structures.

Figure 2.6: Geometrical parameters of the four rib waveguide structure:
w = 4µm, H = 6µm, h = 3µm, refractive indices: ns = 3.34, nc = 3.44,
ncl = 1.0, operating wavelength λ = 1.55µm. A computational window
x ∈ [−10, 10]µm has been used.

Fig. 2.6 introduces a waveguide geometry with four parallel ribs [67]. It
can be divided into 9 slices S1, . . . , S9 with horizontally homogeneous re-
fractive index distributions. In the field expansion we will take into account
modes from two slices, S2 (alternatively, any other even numbered slice)
and S3 (alternatively, any other odd numbered slice). Table 1 compares
normalized propagation constants with results from other methods. Note
that even with only quite few modes Xi in the expansion (2.3.3) reasonable
accuracy in comparison with FEMLAB results can be achieved. The devi-
ation in propagation constants from results of other methods can be due to
polarization effects, i.e. due to different approximate mode equations. In
Fig. 2.7 corresponding field profiles are shown.
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b TE0 TE1 TE2 TE3

DSI 0.944760 0.943999 0.942957 0.942008
EIM 0.959920 0.959118 0.958025 0.957040

FEMLAB 0.946091 0.945366 0.944381 0.943493

VMEM[3,2] 0.945826 0.945099 0.944104 0.943199
VMEM[30,2] 0.946113 0.945392 0.944407 0.943513

b TM0 TM1 TM2 TM3

DSI 0.944509 0.943852 0.942975 0.942195
EIM 0.958671 0.957919 0.956907 0.956006

FEMLAB 0.943087 0.942395 0.941462 0.940628

VMEM[3,2] 0.942558 0.941863 0.940917 0.940062
VMEM[30,2] 0.943019 0.942314 0.941381 0.940539

Table 1. Normalized effective indices b = ((β/k)2 − n2
s)/(n

2
c − n2

s) of the
four rib waveguide of Fig. 2.6. DSI: discrete-spectral-index method by Ng
et. al. [67], EIM: effective index method, FEMLAB: finite element calcu-
lation on a dense mesh and a computational window (x, y) ∈ [−10, 10] ×
[−20, 20]µm2, VMEM[i,j]: the present method, where a computational win-
dow x ∈ [−10, 10]µm and i and j modes of the slices S2 and S3 correspond-
ingly were used in the expansion (2.3.3).

2.4.3 3D coupler

Fig. 2.8 shows the geometry of a three dimensional four waveguide coupler
[24], [60]. This waveguide can be divided into five slices with homogeneous
refractive index distribution along the y-direction. We performed two cal-
culations: one on an infinite and one on a finite computational window. In
the former case only two – one symmetric and one antisymmetric – guided
modes exist in the slice S2 (alternatively, S4) and none in the slice S3 (alter-
natively, S1 or S5). It is obvious, that only symmetric modes of constituting
slices will influence the estimation of propagation constants and field pro-
files of symmetric, with respect to y-axis, modes of the whole waveguide,
while antisymmetric modes will be irrelevant, and vice versa. If a compu-
tational window x ∈ [x0, x1] is used, complete sets of modes exist in all five
slices. The reasoning of choosing either symmetric or antisymmetric modes
remains valid.

Table 2 compares effective indices, obtained by various other methods
and the present one. To calculate propagation constants of modes TE00
and TE01 (TE10 and TE11) only symmetric (antisymmetric) modes were
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Figure 2.7: VMEM[30, 2] field profiles of the four rib waveguide of the Fig.
3 for the propagation constants of Table 1.

used. Rather accurate estimations of effective indices are achieved already
with only one mode in the expansion. Fig. 2.9 shows the corresponding field
profiles.

Due to the fact that slices S1, S3, S5 do not support any guided modes
effective indices of these slices are not defined and thus the ”standard”
EIM cannot be consistently applied to this waveguide geometry. As an
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Figure 2.8: A 3D waveguide coupler – four equidistant square cores of higher
refractive index embedded in a substrate of lower refractive index [24]. Pa-
rameters are h = 3µm, H = 4µm, ns = 1.506, nc = 1.512, operating
wavelength λ = 1.32µm.

approximation to these indices the substrate refractive index ns was used
to compute the EIM effective indices of Table 2. Note that EIM profiles are
always discontinuous across the interfaces, while the VMEM fields are well
defined and continuous even with one mode in the expansion (2.3.3).

N00
eff N01

eff N10
eff N11

eff

VFEM 1.5075807 1.5067966 1.5067966 1.5060260
WMM 1.5078966 1.5071085 1.5071092 1.5064697
EIM 1.5080433 1.5072134 1.5075570 1.5067277

VMEM∗[1,0] 1.5077912 1.5069894 1.5069690 1.5061836
VMEM[15,2] 1.5078853 1.5070795 1.5070793 1.5062961

Table 2. Effective indices Neff = β/k of the TE modes of the 3D cou-
pler; VFEM: vectorial FEM [24], WMM: wave matching method [60], EIM:
effective index method, VMEM[i,j]: the present method with i and j modes
of slices S2 and S3 correspondingly, used in the field expansion. For the
results VMEM* an infinite computational window was used and for VMEM
the computational window was x ∈ [−20, 20]µm.

2.5 Concluding remarks

A variational method for mode analysis of dielectric waveguides was devel-
oped. VMEM results were compared with several other methods on differ-
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(a) (b)

Figure 2.9: (a) VMEM*[1,0] and (b) VMEM[15,2] field profiles of the 3D
coupler.

ent waveguide geometries. Somewhat remarkably, the comparison indicates
that a reasonable accuracy in the computation of propagation constants can
be achieved with rather few (sometimes: single) modes in the field expan-
sion. No problem arises, if one of the constituting slices is below cut-off.

It was shown that the VMEM is applicable to waveguides with arbitrary,
piecewise constant rectangular cross-section. In principle, also waveguides
with arbitrary refractive index distributions (graded index, non-rectangular
discontinuities) can be considered, provided these can reasonably be approx-
imated in a staircase manner by slices with piecewise constant rectangular
refractive index distribution [107].

Although in this chapter we concentrated on scalar / semivectorial anal-
ysis, it will be shown that it is possible to extend this method to vectorial
calculations by using the stationary formula for the vectorial mode equa-
tions [101] together with suitable templates for the vectorial fields.

2.6 Appendix

If TM polarized modes are considered, some of the equations in sections
2.2 and 2.3 have to be modified as follows. The principal magnetic field
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component H = Hy(x, y) is to satisfy the scalar TM mode equation

∇
(

1

n2(x, y)
∇H

)

+ k2H = β2 1

n2(x, y)
H. (A-1)

Propagation constants are found as values of the functional

F(H) =

∫ [

− 1

n2(x, y)

∣

∣∇H(x, y)
∣

∣

2
+ k2H2(x, y)

]

dx dy
∫

1

n2(x, y)
H2(x, y) dx dy

(A-2)

at critical points. When restricted to the field template (2.3.3) with TM
modes, (A-2) reads

F(Y1, . . . , YN ) =

∫

[

− 1

n2(x, y)

∣

∣∇
(

N
∑

i=1

Xi(x)Yi(y)
)∣

∣

2
+ k2

(

N
∑

i=1

Xi(x)Yi(y)
)2

]

dx dy

∫

1

n2(x, y)

(

N
∑

i=1

Xi(x)Yi(y)
)2

dx dy

.

(A-3)

Evaluation of the condition for stationarity leads to the equation
(

F(y)Y′)′ + M(y)Y = β2F(y)Y (A-4)

with Y and F(y)Y′ required to be continuous across the slice interfaces,
where the entries of the matrices F and M are

Fg,h =

x1
∫

x0

1

n2(x, y)
Xg(x)Xh(x) dx, (A-8)

Mg,h =

x1
∫

x0

(

k2XgXh −
1

n2(x, y)
X ′

gX
′
h

)

dx. (A-9)

The function Y in each separate slice satisfies the vectorial differential equa-
tion with constant coefficients

(

Y(j)
)′′

+ T(j)Y(j) = β2Y(j), where T(j) =
(

F(j)
)−1

M(j), (A-11)

and the continuity conditions are (2.3.12) and

F(j)
(

Y(j)(y(j))
)′

= F(j+1)
(

Y(j+1)(y(j))
)′

, j = 1, . . . , r − 1. (A-13)
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Using the exponential form exp(µ(j)y)pj for Y(j) within the slice Sj one
obtains a system of equations in the form of (2.3.14), where the columns of
the submatrices are given by

Vd(i) =

[

exp(µ
(1)
i y(1))p

(1)
i

µ
(1)
i exp(µ

(1)
i y(1))F(1)p

(1)
i

]

, Vc(i) =

[

− exp(−µ
(r)
i y(r−1))p

(r)
i

µ
(r)
i exp(−µ

(r)
i y(r−1))F(r)p

(r)
i

]

, (A-15)

Aj−(i) =

[

− exp(µ
(j)
i y(j−1))p

(j)
i

−µ
(j)
i exp(µ

(j)
i y(j−1))F(j)p

(j)
i

]

, Bj−(i) =

[

− exp(−µ
(j)
i y(j−1))p

(j)
i

µ
(j)
i exp(−µ

(j)
i y(j−1))F(j)p

(j)
i

]

,

(A-16)

Aj+(i) =

[

exp(µ
(j)
i y(j))p

(j)
i

µ
(j)
i exp(µ

(j)
i y(j))F(j)p

(j)
i

]

, Bj+(i) =

[

exp(−µ
(j)
i y(j))p

(j)
i

−µ
(j)
i exp(−µ

(j)
i y(j))F(j)p

(j)
i

]

. (A-17)



3
Vectorial mode problems

A flexible and efficient method for fully vectorial modal analysis of 3D

dielectric optical waveguides with arbitrary 2D cross-sections is pro-

posed. The technique is based on expansion of each modal component

in some a priori defined functions defined on one coordinate axis times

some unknown coefficient-functions, defined on the other axis. By

applying a variational restriction procedure the unknown coefficient-

functions are determined, resulting in an optimum approximation of

the true vectorial mode profile. This technique can be related to both

Effective Index and Mode Matching methods. A couple of examples

illustrate the performance of the method.

3.1 Introduction

Three-dimensional optical channel waveguides are basic components of inte-
grated optical devices such as directional couplers, wavelength filters, phase
shifters, and optical switches. The successful design of these devices requires
an accurate estimation of the modal field profiles and propagation constants.
Over already some decades several classes of methods for the analysis of di-
electric optical waveguides were developed: among these are techniques of
more numerical character, like Finite Element and Finite Difference approx-
imations, the Method of Lines, and Integral Equations Methods, but also
more analytical approaches like Film Mode Matching (FMM) and the Ef-
fective Index Method (EIM). Detailed overviews of these techniques can be
found in [16], [102], [82].
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In the present chapter we propose an extension of the scalar mode solver
of Chapter 2 to vectorial problems. Our method is based on individual
expansions of each mode profile component into a set of a priori defined
functions of one coordinate axis (vertical), here, field components of some
slab waveguide mode. The expansion is global, meaning that the same
basis functions are used at any point on the horizontal axis. The unknown
expansion coefficients – in our case functions, defined on the horizontal axis
– are found by means of variational methods [101], [31].

The present method can be viewed as some bridge between two popular
approaches, namely the FMM on the one hand and the EIM on the other.
In the standard EIM the 2D problem of finding modes of the waveguide is
reduced to consecutive solving two 1D problems: at first, the 1D modes, and
their propagation constants, of the constituting slab waveguides are found,
and then their propagation constants are used to define effective refractive
indices of a reduced 1D problem. In general this is a very quick and easy
approach for a rough estimation of mode parameters. However, in case one
of the constituting slabs doesn’t support a guided mode (for example, some
substrate material with air on top) it is impossible to uniquely define the
effective refractive index in that particular region of the reduced problem.
Should it be the refractive index of the cladding, refractive index of the
air, or something in between? The restriction of the present approach to
one-term expansions will answer this question.

The validity of the method was checked on several structures, including
waveguides with rectangular and non-rectangular piecewise-constant refrac-
tive index distributions, and a diffused waveguide. Comparison shows that
the present method is a more consistent and accurate alternative to the stan-
dard EIM and also can be pushed to its limits and used for more rigorous
computations.

The chapter is organized as follows. In section 3.2 the problem of finding
vectorial modes of the dielectric waveguides is stated, then some properties
of slab modes and the modal field ansatz are described in sections 3.3 and
3.4. The equations for the coefficient functions are derived in section 3.5.
Section 3.6 outlines the numerical solution methods. The relation of the
present method to the EIM and FMM is explained in more detail in sections
3.7 and 3.8. Then in section 3.9 numerical results for several waveguide
configurations are presented. Finally some concluding remarks are made in
section 3.10.
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3.2 Variational form of the vectorial mode

problem

Consider a z-invariant dielectric isotropic waveguide defined on its cross-
section by a refractive index n(x, y) or relative dielectric permittivity dis-
tribution ε(x, y) = n2(x, y). Figure 3.1 shows two examples.

y

x

z

e(x,y) e(x,y)
y

x

z

(a)

(b)

Figure 3.1: Examples for 3D di-
electric waveguides defined on their
cross-section by permittivity distri-
bution ε(x, y). The structures are
invariant along the z-axis. (a) box-
shaped hollow-core waveguide, a con-
cept from [66], the subject of section
3.9.1, (b) a standard rib waveguide,
investigated in section 3.9.2.

The propagation of monochromatic light, given by the electric Ē and mag-
netic H̄ components of the optical field, with propagation constant β and
frequency ω,

Ē(x, y, z, t) = E(x, y) e−iβz eiωt, H̄(x, y, z, t) = H(x, y) e−iβz eiωt,
(3.2.1)

is governed by the Maxwell’s equations for the mode profile components E

and H
ωε0εE + iCH = βRH,
ωµ0µH− iCE = −βRE,

(3.2.2)

with

R =





0 1 0
−1 0 0
0 0 0



 , C =





0 0 ∂y

0 0 −∂x

−∂y ∂x 0



 , (3.2.3)

vacuum permittivity ε0, vacuum permeability µ0, relative permittivity
ε(x, y) = n2(x, y). Here and further in this chapter it is assumed that
the relative permeability µ is equal to 1, as is the case for most materials
at optical frequencies.

We will work with a variational formulation of the Maxwell’s equations.
Solutions (β,E,H) of the equations (3.2.2) correspond to stationary points
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(E,H) of the functional [101]

F(E,H) =
ωε0〈E, εE〉+ ωµ0〈H,H〉+ i 〈E, CH〉 − i 〈H, CE〉

〈E, RH〉 − 〈H, RE〉 , (3.2.4)

with propagation constant β = F(E,H) equal to the value of the functional
at the stationary point. The inner product used is 〈A,B〉 =

∫

A∗ ·B dx dy.
The natural interface conditions are the continuity of all tangential field
components across the interfaces.

3.3 Slab modes

In this section we will consider modes of slab waveguides, which we will use
in the next section as building blocks to construct approximations of the
modes of waveguides with arbitrary 2D cross-sections.

X
Ey

(x)

Figure 3.2: A slab waveguide with permittivity distri-
bution εr(x) and principal component χEy of a corre-
sponding TE slab mode (3.3.5).

A one dimensional TE mode, propagating in the z-direction with prop-
agation constant βr,TE

, of the slab waveguide, given by the permittivity
distribution εr(x) (Figure 3.2) can be represented as
(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

(

0, χEy(x), 0
χHx(x), 0, χHz(x)

)

e−iβr,TE
z.

(3.3.5)
The principal electric component χEy satisfies the equation

(

χEy(x)
)′′

+ k2εr(x)χEy(x) = β2
r,TE

χEy(x) (3.3.6)

with vacuum wavenumber k = 2π/λ. The remaining two nonzero compo-
nents of the mode profile can be derived directly from χEy :

χHx(x) = − β

ωµ0

χEy(x), χHz(x) =
i

ωµ0

(

χEy(x)
)′

. (3.3.7)
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The slab waveguide (Figure 3.2) is by definition invariant in the (y, z)-plane.
So if a modal solution of Maxwell’s equations propagating in the z-direction
will be rotated in the (y, z)-plane by an angle θ (Figure 3.3), it will still
remain a modal solution of the Maxwell’s equations, but now propagating
in the direction (y, z) = (− sin θ; cos θ):
(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

(

0, χEy(x) cos θ, χEy(x) sin θ
χHx(x), −χHz(x) sin θ, χHz(x) cos θ

)

·

· e−iβr,TE
(− sin θy + cos θz).

(3.3.8)

yx

z

q

X
Hz Ez( )

X
Ey Hy( )

q

X
Hx Ex( )

br,TE (TM)

Figure 3.3: A slab TE (TM) mode propagat-
ing in the z-direction with propagation constant
βr,TE (TM) is rotated around the x-axis by an an-
gle θ. The rotated mode propagates with the
same propagation constant, but in the direction
(y, z) = (− sin θ, cos θ).

Similarly a 1D TM slab mode, propagating in the z-direction with prop-
agation constant βr,TM

(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

(

χEx(x), 0, χEz(x)
0, χHy(x), 0

)

e−iβr,TM
z,

(3.3.9)
will still be a solution of the Maxwell’s equations after a rotation around
the x-axis (Figure 3.3)
(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

(

χEx(x), −χEz(x) sin θ, χEz(x) cos θ
0, χHy(x) cos θ, χHy(x) sin θ

)

·

· e−iβr,TM
(− sin θy + cos θz).

(3.3.10)
The principal magnetic component χHy satisfies the equation

(

1

εr(x)
(χHy(x))′

)′
+ k2χHy(x) = β2

r,TM

1

εr(x)
χHy(x). (3.3.11)

Again the remaining two nonzero components of the mode profile can be
derived directly from χHy :

χEx(x) =
β

ωε0εr(x)
χHy(x), χEz(x) = − i

ωε0εr(x)

(

χHy(x)
)′

. (3.3.12)
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3.4 Modal field ansatz

We now return to the vectorial modes of the 3D waveguides, as in section
3.2. Each field component F ∈ {Ex, Ey, Ez, Hx, Hy, Hz} is represented indi-
vidually as a superposition of mF a priori known functions XF

j (x), defined
on one coordinate axis, times some unknown coefficient-function Y F

j (y),
defined on the other axis:

F (x, y) =

mF
∑

j=1

XF
j (x)Y F

j (y). (3.4.13)

For the functions X we will take components of slab modes from some
reference slice(s). Further in the chapter two types of the expansion will be
relevant, one which introduces 5 unknown functions Y per slab mode, and
another one, which introduces only 3. These will be called five component
approximation (VEIM5) and three component approximation (VEIM3), re-
spectively.

In case of VEIM5, the TE basis mode (3.3.5) number j with mode profile

components χ
Ey

j , χHx

j , χHz

j contributes to the expansion of components Ey,

Ez, Hx, Hy and Hz with the form χ
Ey

j Y
Ey

j , χ
Ey

j Y Ez

j , χHx

j Y Hx

j , χHz

j Y
Hy

j and

χHz

j Y Hz

j . Likewise, the TM basis mode (3.3.9) number l with mode pro-

file components χ
Ey

l , χHx

l , χHz

l contributes to the expansion of components

Ex, Ey, Ez, Hy and Hz with the form χEx

l Y Ex

l , χEz

l Y
Ey

l , χEz

l Y Ez

l , χ
Hy

l Y
Hy

l ,

χ
Hy

l Y Hz

l , such that the complete expansion looks like
(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

=
∑

j∈TE

(

0, χ
Ey

j (x)Y
Ey

j (y), χ
Ey

j (x)Y Ez

j (y)

χHx

j (x)Y Hx

j (y), χHz

j (x)Y
Hy

j (y), χHz

j (x)Y Hz

j (y)

)

+

+
∑

l∈TM

(

χEx

l (x)Y Ex

l (y), χEz

l (x)Y
Ey

l (y), χEz

l (x)Y Ez

l (y)

0, χ
Hy

l (x)Y
Hy

l (y), χ
Hy

l (x)Y Hz

l (y)

)

.

(3.4.14)
This expansion has the drawback that the functions making up some

of the components can become linearly dependent. In case of VEIM3 we
omit contributions of some modal components. So a TE basis mode (3.3.5)

number j with mode profile components χ
Ey

j , χHx

j , χHz

j contributes to the

expansion of components Ey, Ez and Hx with the form χ
Ey

j Y
Ey

j , χ
Ey

j Y Ez

j ,
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χHx

j Y Hx

j . Likewise a TM basis mode (3.3.9) number l with mode profile

components χ
Ey

l , χHx

l , χHz

l contributes to the expansion of components Ex,

Hy and Hz with the form χEx

l Y Ex

l , χ
Hy

l Y
Hy

l , χ
Hy

l Y Hz

l , such that the complete
expansion looks like

(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

=
∑

j∈TE

(

0, χ
Ey

j (x)Y
Ey

j (y), χ
Ey

j (x)Y Ez

j (y)

χHx

j (x)Y Hx

j (y), 0, 0

)

+

+
∑

l∈TM

(

χEx

l (x)Y Ex

l (y), 0, 0

0, χ
Hy

l (x)Y
Hy

l (y), χ
Hy

l (x)Y Hz

l (y)

)

.

(3.4.15)

Note that in both expansions each contributing component χF of 1D
mode is used to represent the field not only in the slab segment where it
belongs to, as in EIM and FMM methods, but also in the whole waveguide.
So even with a single slab mode in both expansions, (3.4.14) and (3.4.15), it
is possible to construct an approximation of the field in the whole structure.
In section 3.7 we will study in detail properties of such one-mode-expansions.

The form of the expansion (3.4.14) was inspired by the mode matching
techniques that use rotated modes (3.3.8), (3.3.10) to locally expand the
total field [5], [95]. In the present approach though, we attribute those parts
of the slab mode components that do not depend on x to the functions Y F ,
treating them as unknowns. In the sections 3.7 and 3.8 we will study the
behavior of these functions Y F .

What concerns the choice of the reference slice(s), it seems that modal
components from the slice, where the maximum power is expected to be
localized, give the best results. Further in this chapter VEIM5 will be used
with a few modes only for rough and efficient approximations, while VEIM3
will be used with higher numbers of modes to obtain accurate, converged
results.

In the following all the slab mode components χ, which are used to
expand a field component F of the complete waveguide, we will denote as
XF (just like in eqn. (3.4.13)).
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3.5 Reduced problem

The next question is how to find corresponding functions Y , such that the
expansion (3.4.13) represents the true solution in the best possible way. For
this purpose we apply variational restriction [102], [31] of the functional
(3.2.4). In short it can be outlined as follows. As it was already mentioned
the critical points of the functional (3.2.4), which satisfy some continuity
conditions, are solutions of the Maxwell’s equations (3.2.2) and, vice versa,
solutions of the Maxwell’s equations (3.2.2) are critical points of the func-
tional (3.2.4).

After insertion of the expansions (3.4.14) or (3.4.15), variation of the
functional (3.2.4) with respect to a function YF , a vector function made up
of all functions Y F , results in the following system of first order differential
equations for YF with parameter β:

A11Y
Ex + A12(Y

Hz)′ = βA13Y
Hy

A21Y
Ey + A22Y

Hz = βA23Y
Hx

A31Y
Ez + A32(Y

Hx)′ + A33Y
Hy = 0

A41Y
Hx + A42(Y

Ez)′ = βA43Y
Ey

A51Y
Hy + A52Y

Ez = βA53Y
Ex

A61Y
Hz + A62(Y

Ex)′ + A63Y
Ey = 0.

(3.5.16)

The elements of the matrices A include the overlap integrals of the func-
tions XF

j (x), their derivatives, and the local permittivity distribution of the
waveguide:

A11(p, j) = ω〈XEx
p , εX

Ex

j 〉 A12(p, j) = i 〈XEx
p , X

Hz

j 〉 A13(p, j) = 〈XEx
p , X

Hy

j 〉
A21(p, j) = ω〈XEy

p , εX
Ey

j 〉 A22(p, j) = −i 〈XEy

p , (XHz

j )′〉 A23(p, j) = −〈XEy

p , X
Hx

j 〉
A31(p, j) = ω〈XEz

p , εX
Ez

j 〉 A32(p, j) = −i 〈XEz
p , X

Hx

j 〉 A33(p, j) = i 〈XEz
p , (X

Hy

j )′〉
A41(p, j) = ωµ〈XHx

p , X
Hx

j 〉 A42(p, j) = −i 〈XHx
p , X

Ez

j 〉 A43(p, j) = −〈XHx
p , X

Ey

j 〉
A51(p, j) = ωµ〈XHy

p , X
Hy

j 〉 A52(p, j) = i 〈XHy

p , (XEz

j )′〉 A53(p, j) = 〈XHy

p , X
Ex

j 〉
A61(p, j) = ωµ〈XHz

p , X
Hz

j 〉 A62(p, j) = i 〈XHz
p , X

Ex

j 〉 A63(p, j) = −i 〈XHz
p , (X

Ey

j )′〉
(3.5.17)

Note that the permittivity appears only in A11, A21 and A31, hence only
these matrices are y-dependent.

If the permittivity exhibits discontinuities along the y-direction, the
functions

YEx and YHx , YEz and YHz (3.5.18)

are required to be continuous at the respective positions.
It turns out that by algebraic operations the system of first order dif-

ferential equations (3.5.16) can be reduced to a system of second order
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differential equations for functions YEx and YHx only. Moreover, since the
components Ey and Ez, Hy and Hz are approximated by the same functions
χ in the representations (3.4.14) and (3.4.15), the matrices A satisfy the
following equalities:

A13 = −iA12

A31 = A21, A32 = iA23, A33 = −A22

A43 = −iA42

A61 = A51, A62 = iA53, A63 = −A52,

(3.5.19)

and hence the system (3.5.16) reduces to

S1u + (S2u
′ + βS3u)′ = β2S2u + βS3u

′, (3.5.20)

with u(y) =

(

YEx(y)
YHx(y)

)

and (anti-)block-diagonal matrices S of the fol-

lowing form:

S1 =

(

A11 0
0 A41

)

,

S2 =

(

−iA12

(

A51 + A52A
−1
21 A22

)

−1
A53 0

0 −iA42

(

A21 + A22A
−1
51 A52

)

−1
A23

)

,

S3 =

(

0 A12A
−1
51 A52

(

A21 + A22A
−1
51 A52

)

−1
A23

A42A
−1
21 A22

(

A51 + A52A
−1
21 A22

)

−1
A53 0

)

.

(3.5.21)

Across the vertical interfaces continuity of

u and S2u
′ + βS3u (3.5.22)

is required.
As soon as the function u, or in other words YEx and YHx , are known,

the functions Y corresponding to the four other components can be derived
as follows:

YEy = iA−1

21
A22

(

A51 + A52A
−1

21
A22

)

−1
A53(Y

Ex)′ + β
(

A21 + A22A
−1

51
A52

)

−1
A23Y

Hx ,

YEz = βA−1

21
A22

(

A51 + A52A
−1

21
A22

)

−1
A53Y

Ex − i
(

A21 + A22A
−1

51
A52

)

−1
A23(Y

Hx)′,

YHy = β
(

A51 + A52A
−1

21
A22

)

−1
A53Y

Ex + iA−1

51
A52

(

A21 + A22A
−1

51
A52

)

−1
A23(Y

Hx)′,

YHz = −i
(

A51 + A52A
−1

21
A22

)

−1
A53(Y

Ex)′ + βA−1

51
A52

(

A21 + A22A
−1

51
A52

)

−1
A23Y

Hx .
(3.5.23)

3.6 Method of solution

In general the system (3.5.20) can be solved by the Finite Element method
[18], [52]. It relies on a spatial discretization, i.e. divides the whole compu-
tational domain into a number of elements. On each of these elements the
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unknown function is represented as a superposition of some basis functions.
The coefficients of the expansion are found using the weak form of eqn.
(3.5.20). While this method is very general, it quickly introduces a large
number of unknowns.

However, due to common techniques of fabrication many waveguides do
not have a completely arbitrary refractive index distribution, but rather one
which is piecewise constant along the horizontal axis or can be approximated
as such. The waveguide then can be split in several vertical slices, where
the refractive index does not change in the horizontal direction. In each of
these layers the general solution of (3.5.20) can be written down analytically.
Gluing them together across the vertical interfaces will give the desired mode
profile.

In the following we will outline each of these methods in more detail.

3.6.1 Arbitrary refractive index distribution: Finite

Element Method

In case of an arbitrary permittivity distribution ε(x, y) (diffused waveguide,
waveguide with slanted sidewalls) the matrices S depend on y, as their
elements include overlap integrals with the permittivity ε(x, y). One of the
ways to solve the differential equation (3.5.20) is by using the Finite Element
Method.

By multiplying both sides of (3.5.20) from the left by some continuous
test vector-function v and integrating over y one gets the weak form of
equation (3.5.20):

∫

(

−vᵀS1u+(vᵀ)′S2u
′) dy +β

∫

(

(vᵀ)′S3u+vᵀS3u
′) dy +β2

∫

vᵀS2u dy = 0.

(3.6.24)

Then we expand the solution u into a finite combination of the basis
functions ϕij,

u(y) =

nd
∑

i=1

ng
∑

j=1

aijϕij(y), (3.6.25)

with nd the dimension of the vector u; ng the number of consecutive grid
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points yj into which the y-axis has been divided, and

ϕij(y) =















0
...

ϕ̂j(y)
...
0















← ith position (3.6.26)

with, for example, linear basis functions

ϕ̂j(y) =















0, y < yj−1 or y ≥ yj+1;
y−yj−1

yj−yj−i
, yj−1 ≤ y < yj;

yj+1−y

yj+1−yj
, yj ≤ y < yj+1.

(3.6.27)

As eqn. (3.6.24) should hold for an arbitrary continuous v, we choose it
to be one of the basis functions ϕij. For i = 1, . . . , nd and j = 1, . . . , ng this
results in the system of exactly nd · ng linear equations

(−Ŝ1 + Ŝ2)a + β(Ŝ3 + Ŝ5)a + β2Ŝ4a = 0, (3.6.28)

where aᵀ = (aij) = ([a11, . . . , and1], [a12, . . . , and2], . . . , [a1ng
, . . . , andng

]) (the
subscript ij here refers to the jth element of the ith subvector). Since for
any square matrix M of dimension ndng × ndng

ϕ
ᵀ

pmMϕij = ϕ̂m(y) ·Mpi(y) · ϕ̂j (3.6.29)

holds, the matrices S turn to be of the following form

Ŝ1(pm, ij) =
∫

ϕ̂mS1piϕ̂j dy,

Ŝ2(pm, ij) =
∫

(ϕ̂m)′S2pi(ϕ̂j)
′ dy,

Ŝ3(pm, ij) =
∫

(ϕ̂m)′S3piϕ̂j dy,

Ŝ4(pm, ij) =
∫

ϕ̂mS2piϕ̂j dy,

Ŝ5(pm, ij) =
∫

ϕ̂mS3pi(ϕ̂j)
′ dy,

(3.6.30)

where the indices pm and ij have the same meaning as in the definition of
the vector a.

The solution of the quadratic eigenvalue problem (3.6.28) with β as an
eigenvalue can be found by transforming it to the linear eigenvalue problem

(

0 1

−Ŝ−1
4 (−Ŝ1 + Ŝ2) −Ŝ−1

4 (Ŝ3 + Ŝ5)

)(

a

b

)

= β

(

a

b

)

. (3.6.31)
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This is a quite straightforward, but expensive approach, as the dimension
of the transformed problem is doubled in comparison to the original one.
Other more involved approaches to tackle a quadratic eigenvalue problem
can be found e.g. in [98]. We apply standard general eigenvalue solvers as
embedded within the LAPACK [58] package. Specialized solvers could be
employed, provided that an initial guess for the propagation constant, or a
range of possible eigenvalues, are available for the problem at hand. On the
other hand, there are situations where all the propagation constants β and
corresponding functions u need to be found together, e.g. if one wants to
expand a 3D field in terms of vectorial modes of some channel waveguide,
as required for the implementation of transparent boundary conditions (cf.
Chapter 5, Ref. [48]).

3.6.2 Piecewise constant refractive index distribution

If a waveguide has a piecewise constant rectangular refractive index profile,
it can be divided by vertical lines into slices with constant refractive index
distribution along the y-direction. In each of these slices the matrices S do
not depend on y. Then (3.5.20) can be rewritten in a more familiar manner:
Inside each of the slices u should satisfy a system of second order differential
equations with constant coefficients S and a parameter β2

S1u + S2u
′′ = β2S2u, (3.6.32)

together with the continuity conditions (3.5.22). Moreover the matrices S1

and S2 are block-diagonal in such a way that the equations for the functions
YEx and YHx decouple inside each of the slices; coupling occurs only across
the vertical interfaces.

Inside each slice a particular solution of the system (3.6.32) can be read-
ily written as

u = c eαyp (3.6.33)

with some constants c, α and a vector p. By substituting (3.6.33) into
(3.6.32) we find a generalized eigenvalue problem with η2 = β2 − α2 as an
eigenvalue:

S1p = η2S2p. (3.6.34)

So inside each of the slices with uniform permittivity along the y-axis



3.7 Relation with the Effective Index Method 57

the function u can be represented as

u =
∑

j



c1j e

√

β2 − η2
j y + c2j e

−
√

β2 − η2
j y



pj (3.6.35)

with eigenvalues ηj and corresponding eigenvectors pj from (3.6.34).
By matching the solutions of the each individual slab across the ver-

tical interfaces using (3.5.22) and looking only for exponentially decaying
solutions for y → ±∞, one can obtain an eigenvalue problem

M(β)c = 0. (3.6.36)

The vector c consists of all unknown coefficients c1j and c2j from the repre-
sentations of u (3.6.35) on all individual slices. The matrix M depends on
β in a non-linear, even non-polynomial way. One of the strategies to tackle
this is at first to specify a range of admissible values β ∈ [I1, I2], where
solutions β are sought. As we are looking only for propagating modes, with
decaying field (3.6.35) at y → ±∞, I1 should be not smaller than the biggest
eigenvalue ηj of (3.6.34) in the left-most and the right-most slabs. At the
same time we require that there exists at least one oscillating function in at
least one vertical slab. So I2 should be smaller than the biggest eigenvalue
ηj of (3.6.34) of all the constituting slabs, except the left- and the right-
most ones. Once this interval is at hand, we scan through it looking for a
β such that the matrix M(β) has at least one zero eigenvalue. Obviously,
to find a non-trivial solution with certain accuracy requires some iterations.
Moreover a large step size might lead to missing some roots while scanning
the interval.

Once a nontrivial solution β, c of (3.6.36) is at hand, u can be recon-
structed using (3.6.35). And then all field components can be obtained
according to expressions (3.5.23) together with (3.4.14) or (3.4.15).

3.7 Relation with the Effective Index Method

In the following section we are going to show what happens if only a single,
TE or TM, slab mode is taken into account in VEIM5 (3.4.14). Using the
variational reasoning we will rigorously derive an analog to the Effective
Index method.
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3.7.1 TE polarization

Let us take only one TE slab mode with propagation constant βr from a
reference slice r with permittivity distribution εr(x), and use it to represent
the vectorial field profile of the complete waveguide as in eqn. (3.4.14). Due
to the fact that XEx ≡ 0, according to (3.5.20) the unknown function Y Hx

satisfies the eqn.

A41Y
Hx +

(

− iA42(A21 + A22A
−1
51 A52)

−1A23(Y
Hx)′

)′
=

= β2
(

− iA42(A21 + A22A
−1
51 A52)

−1A23

)

Y Hx .
(3.7.37)

After some manipulations, using the relations between the modal compo-
nents χEy , χHx and χHz of the slab mode the above relation can be rewritten
as follows

( 1

εeff

(Y Hx)′
)′

+ k2Y Hx = β2 1

εeff

Y Hx (3.7.38)

with

εeff(y) =
β2

r

k2
+
〈χEy , (ε(x, y)− εr(y))χEy〉

〈χEy , χEy〉 . (3.7.39)

This looks exactly as a TM mode equation, similar to the standard Ef-
fective Index Method. In the reference slice one has ε = εr, and the effective
permittivity εeff is equal to the squared effective index of the mode of the
reference slice β2

r /k
2. In other slices this squared effective index is modified

by the difference between the local permittivity and that of the reference
slice, weighted by the local intensity of the fundamental component of the
reference mode profile. Hence, on the contrary to the EIM, even in slices
where no guided mode exist, the effective permittivity can still be defined.

Now it is instructive to see how the mode profile adjusts both in the
reference slabs and elsewhere. Inside a slice with constant permittivity εeff,
eqn. (3.7.38) permits solutions of the form

Y Hx = c+ eiαy + c− e−iαy (3.7.40)

for arbitrary constants c+ and c− and with

β2 + α2 = k2εeff. (3.7.41)
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With the abbreviation ρ2 = k2εeff from (3.5.23) it follows that

Y Hz =
βrβ

ρ2

(

c+ eiαy + c− e−iαy),

Y Ey = Y Hz ,

Y Ez =
βrα

ρ2

(

c+ eiαy − c− e−iαy),

Y Hy = −Y Ez .

(3.7.42)

By introducing an angle θ such that cos θ = β/ρ, one can write

( Y Ex , Y Ey , Y Ez

Y Hx , Y Hy , Y Hz

)

(y) = c+
βr

ρ
ei ρ sin θy

( 0, cos θ, sin θ
ρ/βr, − sin θ, cos θ

)

+

+c−
βr

ρ
e−i ρ sin θy

( 0, cos θ, − sin θ
ρ/βr, sin θ, cos θ

)

.

(3.7.43)

If we use the principal square roots of α2 and ρ2 for α and ρ, and the
principal inverse cosine for θ eq. (3.7.43) can be interpreted as follows. In
the slice where the reference slab mode lives ρ = βr, and we find that
functions Y act as a rotation of the slab mode, such that the projection of
the propagation constant of this mode onto the z-axis will match the global
propagation constant β. In other slices, in addition to the rotation of the y
and z components of the slab mode, the x component is scaled by ρ/βr.

3.7.2 TM polarization

Analogously, the eqn. (3.5.20) can be rewritten for a single TM mode, with
a field template as in (3.4.14). We now have XHx ≡ 0 in eqn. (3.5.20) and
using the properties of the TM slab mode, the original equation for the
unknown function Y Ex ,

A11Y
Ex +

(

− iA12

(

A51 + A52A
−1
21 A22

)−1
A53(Y

Ex)′
)′

=

= β2
(

− iA12

(

A51 + A52A
−1
21 A22

)−1
A53

)

Y Ex ,
(3.7.44)

can be rewritten as

( 1

ε1eff

(Y Ex)′
)′

+ k2ε2Y
Ex = β2 1

ε1eff

Y Ex , (3.7.45)
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with

ε1eff(y) =
β2

r

k2

〈χEz , εr(x)χEz〉
〈χEz , ε(x, y)χEz〉 +

〈χHy , χHy〉
〈χHy , 1

εr(x)
χHy〉

〈χEz , (ε(x, y)− εr(x))χEz〉
〈χEz , ε(x, y)χEz〉 ,

ε2(y) =
〈χEx , ε(x, y)χEx〉
〈χEx , εr(x)χEx〉 .

(3.7.46)

This appears to be neither a standard TE nor a TM mode equation, but
something in between, with the local refractive index distribution appearing
both in the terms with and without derivative. In the reference slice with
ε = εr, the effective permittivity ε1eff is equal to the squared effective index
β2

r /k
2 of the mode of the reference slice and ε2 = 1. Contrary to the EIM,

even in slices where no guided mode exists quantities that act like effective
indices can still be rigorously defined.

What concerns the mode profile, in intervals along the y-axis with con-
stant ε1eff and ε2, local solutions of eqn. (3.7.45) are of the form

Y Ex = c+ eiαy + c− e−iαy (3.7.47)

with

β2 + α2 = k2ε1effε2. (3.7.48)

Let us denote the right hand side of eqn. (3.7.48) as ρ2 = k2ε1effε2 and

ε3(y) = 〈χEz ,ε(x,y)χEz 〉
〈χEz ,εr(x)χEz 〉 , then according to eqn. (3.5.23) one obtains

Y Hz =
βrαε2

ρ2

(

c+ eiαy − c− e−iαy),

Y Ey = − 1

ε3

Y Hz ,

Y Hy =
βrβε2

ρ2

(

c+ eiαy + c− e−iαy),

Y Ez =
1

ε3

Y Hy .

(3.7.49)



3.8 Relation with the Film Mode Matching Method 61

By introducing an angle θ such that cos θ = β/ρ, one can write

( Y Ex , Y Ey , Y Ez

Y Hx , Y Hy , Y Hz

)

(y) =

= c+
βrε2

ρ
ei ρ sin θy

( ρ/βrε2, −ε−1
3 sin θ, ε−1

3 cos θ
0, cos θ, sin θ

)

+

+c−
βrε2

ρ
e−i ρ sin θy

( ρ/βrε2, ε−1
3 sin θ, ε−1

3 cos θ
0, cos θ, − sin θ

)

.

(3.7.50)

In the reference slice ρ = βr and we find that the functions Y also in
this case act as a rotation of the slab mode. In all other slices, while the y-
and z-components of the magnetic field are just rotated by the angle θ, the
electric y and z components are not only rotated, but also scaled by ε−1

3 .
In addition to this the x-component is scaled by ρ/βrε2.

3.8 Relation with the Film Mode Matching

Method

As we could see in the previous section if only one, TE or TM, slab mode
is used to expand the total field profile using the 5 component expansion
(3.4.14), the variational procedure leads to functions Y that act as a rota-
tion. Then the field representation inside the slice where the slab mode lives
replicates the field ansatz of the FMM (cf. section 3.4). In the following we
look at the case when multiple TE and TM slab modes appear in the 5
component expansion (3.4.14).

Let us rewrite the second, third, fifth and sixth equations of (3.5.16) as

ITE(Y
Ey

TE −YHz

TE) + ITM(Y
Ey

TM + YHz

TM) = A−1
21 A23(βYHx −GTEY

Hz

TE)

−ITE(Y
Ey

TE −YHz

TE) + ITM(Y
Ey

TM + YHz

TM) = A−1
51 A53(GTMY

Ey

TM − i (YEx)′)

ITE(YEz

TE + Y
Hy

TE) + ITM(YEz

TM −Y
Hy

TM) = A−1
21 A23(GTEY

Hy

TE − i (YHx)′)

ITE(YEz

TE + Y
Hy

TE)− ITM(YEz

TM −Y
Hy

TM) = A−1
51 A53(βYEx −GTMYEz

TM)
(3.8.51)

with functions Ya
b corresponding to a vector of all the functions Y related

to modal component of polarization b, used to expand component a of the
total field. Gb is a diagonal matrix with propagation constants βr,j of the
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slab modes of polarization b sitting on the diagonal. Matrices

ITE =

(

1nTE×nTE

0nTM×nTE

)

, ITM =

(

0nTE×nTM

1nTM×nTM

)

, (3.8.52)

have been introduced to increase the readability of the equations. Here 1d

and 0d denote correspondingly the unity- and zero-matrix of a dimension d,
and symbols nTE and nTM denote the number of slab modes of respectively
TE and TM polarization included in the expansion (3.4.14).

Obviously, functions Y that satisfy

Y
Ey

TE = YHz

TE, Y
Ey

TM = −YHz

TM,

βYHx = GTEY
Hz

TE, GTMY
Ey

TM = i (YEx)′,

YEz

TE = −Y
Hy

TE, YEz

TM = Y
Hy

TM,

GTEY
Hy

TE = i (YHx)′, βYEx = GTMYEz

TM

(3.8.53)

are solutions of (3.8.51). Using these relations together with the first and
the fourth equations of (3.5.16) result in

(YEx)′′ + (GTM)2YEx = β2YEx

(YHx)′′ + (GTE)2YHx = β2YHx .
(3.8.54)

According to eqns. (3.8.51) and (3.8.54) all the functions Y decouple
inside the slice where the slab modes belongs to. So we can solve these
equations for all the components of YEx and YHx separately. Solutions of
(3.8.54) have the form

Y Hx

j = c+,j eiαjy + c−,j e−iαjy (3.8.55)

with
β2 + α2

j = β2
r,j. (3.8.56)

Other components can be derived from (3.8.51) as

( Y Ex

j , Y
Ey

j , Y Ez

j

Y Hx

j , Y
Hy

j , Y Hz

j

)

(y) = c+,j eiβr,j sin θjy
( 0, cos θj, sin θj

1, − sin θj, cos θj

)

+

+c−,j e−iβr,j sin θjy
( 0, cos θj, − sin θj

1, sin θj, cos θj

)

,

(3.8.57)
where cos θj = β/βr,j.
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Hence the functions Yj corresponding to TE slab mode number j rotate
the original slab mode around the x-axis such that the projection of its
propagation constant βr,j onto the direction of propagation z will be pre-
cisely the propagation constant β of the mode of the complete waveguide
structure. The same is true for TM slab modes.

We showed that the field ansatz of rotated slab modes, as used locally in
the Film Mode Matching method [95], [5] can be found also by the present
approach where it appears to be optimal. While in itself it might seem rather
pointless to reinvent the method, the idea behind the present technique
might be used in deriving some sort of analogue of the FMM for full 3D
scattering problems, in which the structure varies in all 3 directions (cf.
Chapter 5, Ref. [48]).

3.9 Numerical results

We will illustrate the method with four examples. The first two deal with
waveguides with piecewise constant rectangular refractive index distribu-
tion. The third example is a waveguide with slanted sidewall and the fourth
is an indiffused waveguide. We will use the acronym VEIM (variational ef-
fective index method) for results of the technique as introduced in sections
3.2 - 3.8.

3.9.1 Box-shaped waveguide

nSi3N4 = 3.17

nSiO2 = 1.4456

y

x

0.3mm

0.15mm

l m=1.55 m

Figure 3.4: Structure of the Box-Shaped
Waveguide. The vertical extents of
the computational window range from
−2.5µm to 2.5µm.

Consider the box-shaped waveguide of Figure 3.4, originating from [66].
It can be divided into five vertical slices with three distinct cross-sections
(Figure 3.5, left). We take slab modes from the side walls of the box (Fig-
ure 3.5, middle) to approximate the modal field in the entire cross-section
(Figure 3.5, right). The waveguide will be analyzed with both 3 (3.4.15) and
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5 (3.4.14) component approximations, denoted by VEIM3a,b andVEIM5a,b,
where a and b are the number of TE and TM slab modes taken into account.

Figure 3.5: Subdivision of the waveguide into slices. Slab modes of the side
walls are used to approximate the field of the mode everywhere.

In Figure 3.6 VEIM51,0 approximation of the vectorial mode profile of
the fundamental TE-like mode is shown. In this case χEy is multiplied by
Y Ey and Y Ez to get Ey and Ez respectively; χHx is multiplied by Y Hx to get
Hx; and χHz is multiplied by Y Hy and Y Hz to get Hy and Hz respectively.
The figure contains plots of all contributing functions. Consistent with the
observation in sec. 3.7.1, we see that Y Ey = Y Hz and Y Ez = −Y Hy . Note
that, contrary to the EIM, the field profile can still be visualized even when
no local guided slab mode exists.
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Figure 3.6: Square waveguide: (a) Functions χ in expansion VEIM51,0; (b)
Functions Y in expansion VEIM51,0; (c) Vectorial field profile VEIM51,0.

Next, Figure 3.7 gives an impression of the ”converged” field profile
obtained using VEIM330,30. The slab mode basis has been discretized by
Dirichlet boundary conditions on the boundaries of the vertical computa-
tional window as given in Figure 3.4. Comparison with Figure 3.6 shows
that even with a single mode in the representation, the main features of the
true field profile are already visible. So the present method with one mode
in the expansion can very well serve as a quick tool for qualitative analysis
of the waveguide structures, while also being able to quantitatively analyze
the waveguide by using more modes in the expansion.
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Figure 3.7: ”Converged” (VEIM330,30) vectorial field profiles of the funda-
mental TE-like mode.

Figure 3.8 shows the propagation constant of the fundamental modes of
the waveguide versus the number m of TE and TM modes in the expansion
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VEIM3m,m for both the present method and a commercial FMM solver [10].
Both methods converge to the same value with comparable convergence
speed.

10 15 20 25 30 35 40
1.524

1.5245

1.525

1.5255

1.526

1.5265

m

β 
/ k

 

 

VEIM3
m,m

 − Present Method

FMM − FieldDesigner, Phoenix Software [2]

Figure 3.8: Convergence of the ef-
fective index of the fundamental
TE-like mode of the box-shaped
waveguide Figure 3.4.

3.9.2 Rectangular rib waveguide

1 mmh

3 mm

l m=1.15 m

n = 3.44

n = 3.4

n = 1.0

y

x
Figure 3.9: Structure of the Rib
Waveguide. Vertical extents of
the computational window are
[−2, 2]µm.

In this section we consider the rib structure from Figure 3.9, which is
used as a benchmark waveguide in [102], [32], [60], and Chapter 2 of this
thesis. The structure supports a fundamental TE and TM mode for all etch
depths h in the range we look in, which is [0.2, 1]. The modes are strongly
polarized, and thus it may be expected that an expansion using only TE
or only TM modes (similar to a semi-vectorial calculation) will give good
results.

At etch depths greater than 0.5µm guided modes do not exist outside the
central slice, so the EIM fails to uniquely determine the effective refractive
index of those regions. We analyze this structure with both 3- (3.4.15) and
5-component (3.4.14) approximations. In the following figures we will refer
to them as VEIM3a,b,c,d and VEIM5a,b,c,d correspondingly. The subscript
letters stand for number of slab modes used in the current approximation:
a – number of TE modes from the central slice, b – number of TE modes
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from the outer slice, c – number of TM modes from the central slice, d –
number of TM modes from the outer slice.

The slab modes are calculated using Dirichlet boundary conditions on
the upper and lower computational domain boundaries. Because of this,
the outer slice mode is still defined when the guided mode of that slice goes
below cut-off.

Figure 3.10 and Figure 3.11 show plots of the TE and TM effective in-
dices correspondingly using these different expansions versus the etch depth.
The figures also show the corresponding EIM results, and, as reference,
FMM results obtained by the commercial mode solver [10].
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Figure 3.10: Convergence of the effective index (β/k) of the fundamental
TE mode of the rib waveguide.
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Figure 3.11: Convergence of the effective index (β/k) of the fundamental
TM mode of the rib waveguide.
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Comparing the results of our method with only one TE (VEIM51,0,0,0) or
TM (VEIM50,0,1,0) mode of the central slice in the expansion (3.4.14) to the
EIM results, shows that for larger etch depths, our results are much closer
to the reference results – especially after the outer slice has gone below cut-
off and the EIM uses the substrate refractive index as (constant) outer slice
effective index.

Adding one outer slice mode to the VEIM expansion greatly improves its
accuracy, especially if it is a guided slab mode; the VEIM51,1,0,0 curves are
much closer to the reference results than the VEIM51,0,0,0 curves, especially
at etch depths below 0.5µm.

Taking five inner and one outer slice mode VEIM55,1,0,0 moves the re-
sults closer to the reference curve, while fifteen inner and one outer slice
modes VEIM515,1,0,0 yield results that almost coincide with the reference.
Note that these results use only TE or only TM modes in the 5-component
expansion (3.4.14), i.e. the resulting fields are semi-vectorial; apparently a
semivectorial approximation is sufficient for an accurate estimation of the
effective indices of this structure.

The present method when using just one central slice TE and TM
mode simultaneously with the three-component-per-mode approximation
VEIM31,0,1,0 (3.4.15) yields results that are quite far from the reference
data. Moving to the five-component-per-mode approximation VEIM51,0,1,0

(3.4.14), on the other hand, gives much better results. Moreover, adding
outer slice TE and TM modes VEIM51,1,1,1 greatly improves the estimation
of propagation constant for both, TE and TM, polarizations.

3.9.3 Waveguide with non-rectangular piecewise con-

stant cross-section

The waveguide cross-section of Figure 3.12 is part of a polarization rotator
in InP/InGaAsP, proposed in [70]. Due to its slanted sidewall, the modes
of this structure are highly hybrid.

Because of the slanted sidewall, the finite element scheme is more suit-
able to calculate the modes of this structure; the semi-analytical method
requires a rather large number of slices, while the finite elements automat-
ically take the slant into account.
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Figure 3.13: Vectorial field profile of the fundamental mode of the polariza-
tion converter. (a) VEIM31,1, (b) VEIM32,2, (c) VEIM37,7.

Figure 3.14 shows the convergence of the effective index of the fundamen-
tal mode of the waveguide versus the number of modes in the 3-component
expansion VEIM3a,b (3.4.15), with a and b being numbers of TE and TM
slab modes from the central (y ∈ (0, 1.15)µm) slab. It also shows the con-
vergence of the commercial FMM mode solver [10], in which the structure
is subdivided into 50 slices. Remarkably, starting from just 2 TE and TM
modes in the 3-component expansion (3.4.15) VEIM32,2, the effective index
is stable and close to the converged value of the FMM solver; 320 modes
in the FMM solver lead to an effective index of 3.2225, while with just 7
TE and TM modes the current method predicts already an effective index
of 3.2223. The field profiles also converge rapidly; Figure 3.13 shows the
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vectorial fields for (a) one (VEIM31,1), (b) two (VEIM32,2), and (c) seven
(VEIM37,7) TE and TM modes in the expansion (3.4.15).
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Figure 3.14: Convergence of the
effective index of the fundamental
mode of the polarization converter.

3.9.4 Indiffused waveguide

To show the flexibility of the present method we apply it to a diffused
waveguide [85] with a refractive index distribution given by

n2(x, y) =
{ n2

s + n2
s(1.052 − 1) exp(−x2/16) exp(−y2/4), if x > 0;

n2
c , if x < 0,

(3.9.58)
with n2

s = 2.1, n2
c = 1.0 and λ = 1.3µm. Similar to the slanted sidewall

waveguide described above, the finite element implementation of the pre-
sented method is the more suitable, since it takes into account the nonuni-
form distribution in the y-direction of the refractive index automatically.
Vertically, the structure is subdivided into 7 layers; horizontally, 20 finite
elements are used. The computational window used in the calculations is
defined as (x, y) ∈ [−1, 8]× [−6, 6]µm2.

Figure 3.15 shows the convergence of the effective index of the funda-
mental mode of the indiffused waveguide versus the number of modes in the
3- (VEIM3a,b) and 5-component (VEIM5a,b) approximations, with a and b
being numbers of TE and TM slab modes of the central (y = 0µm) slab.
The results are compared to the rigorous Finite Difference simulation (with
129× 129 grid points) [10]. Since the fundamental mode is strongly polar-
ized, the semi-vectorial approximation appears to converge much faster.

On Figure 3.16 field profiles of the dominant electric component Ey of the
fundamental TE mode are shown. The effective index Neff = βλ/2π of the
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Figure 3.16: Field profiles of
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nent Ey of the fundamental TE
mode: left – VEIM31,1, right –
VEIM315,15.

fundamental mode on the left picture is 1.4965 and on the right – 1.48802,
which compares well with the Finite Difference simulation – 1.48797.

3.10 Concluding remarks

A variational method for the fully vectorial analysis of arbitrary isotropic di-
electric waveguides was developed. Similar to the scalar approach of Chap-
ter 2 this method gives rather accurate estimates of the propagation con-
stants, sometimes even with only a few terms in the expansion.

When applying the present method with only one slab mode in the
expansion of the modal field of the complete waveguide, this mode is trans-
formed in all different slices to fit the true solution there the best. Together
with the shape transformation, the effective index of this mode is uniquely
transformed. Additionally, the expression for the transformed propagation
constant is quite simple and is certainly not more complicated, than the
calculation of a slab mode. In this way the present procedure turns out to
be a simple and still a more rigorous way to obtain a first intuitive guess
for the propagation constant and field profile, than the standard Effective
Index Method.

It turns out that in case a TE mode is used in the expansion, the reduced
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equation appears to be a TM mode equation. At the same time when a
TM mode is used, the reduced equation appears to be neither TE, nor
TM mode equation, but something in between, with the effective refractive
indices appearing both under the derivative sign and in the right part of
the equation.

While in the Film Mode Matching method, rotated modes of each slice
are used to locally expand the field, VEIM uses only one set of modes ev-
erywhere. We showed that in the reference slice, where the 1D modes are
calculated, VEIM predicts exactly the same rotations as the Film Mode
Matching method uses. In the reference slice the total field profile is a su-
perposition of these rotated 1D TE and TM modes; in other slices, however,
the components of all the 1D modes mix.

Of course the question remains – would some other combination of slab
mode components lead to faster convergence? For example, one could imag-
ine that in a certain case a superposition of e.g. explicitly selected profiles of
specific slices would lead to similar results as if one would take functions re-
lated to more, let’s say, five but consecutive modes – from the fundamental
to the fourth order. However, adding field profiles from different slices may
lead to a (near) linear dependency of functions X, and result in non-unique
functions Y . Obviously, the safe choice is to use in the approximation of a
component of the total field only profiles from a single slice. Nevertheless,
when only a few modal components are used, it may, as our calculations
show, be beneficial to use one or two modes from other slice(s).

Similar ideas can be applied to optical scattering problems in 2D and
3D, as will be shown in Chapters 4 and 5.



4
2D scattering problems

This chapter describes a simulation method for 2D frequency domain

scattering problems in photonics. The technique reduces the spatial

dimensionality of the problem by means of global, continuous mode

expansion combined with a variational formalism; the resulting equa-

tions are solved using a finite element method. Transparent influx

boundary conditions and perfectly matched layers are employed at

the computational window boundaries. Numerical examples validate

the method.

4.1 Introduction

Photonic integrated circuit design relies in general heavily on computa-
tional tools. Simulations are, on the one hand, employed for rough and
approximate, but quick and efficient assessment of a configuration. On the
other hand, the verification and fine-tuning of a design requires rigorous,
accurate calculations, that typically demand a much higher computational
effort. Among the multitude of existing approaches to frequency domain
scattering problems in photonics we will briefly highlight two methods that
are typically used for the aforementioned purposes.

Although “the” Effective Index Method (EIM) is mostly being formu-
lated for the calculation of waveguide modes [15, 107, 101, 2, 64, 17, 71,
28, 84], optical scattering problems can just as well be treated in terms
of effective indices [104, 79, 109, 86, 36]. Replacing, more or less heuristi-
cally, the original 2D Helmholtz problem by a scalar equation for 1D fre-
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quency domain wave propagation through an effective structure, one ob-
tains a very approximate solution at very low computational cost. In con-
trast, Bidirectional Eigenmode Propagation (BEP, also called Eigenmode
Expansion Method or EME) schemes aim at accurate, converged solutions
[96, 108, 62, 7, 61, 9]. Meant for structures with piecewise constant permit-
tivity, the optical electromagnetic field is expanded locally into sets of 1D
slab modes. Bidirectional mode overlaps then connect the local expansions
across interfaces.

Figure 4.1: 2-to-1D dimensionality reduction, the defect grating structure
with a probe tip from section 4.3.2. Using a global mode expansion together
with variational techniques, the original problem in two spatial dimensions
(left) is reduced to an effective system of differential equations in one spatial
variable (right).

The current method is conceptually similar to what was applied in the
context of scalar (Chapter 4) and vectorial (Chapter 5) mode solvers and
employs a global mode expansion. A given structure is enclosed by a com-
putational window (CW) (Figure 4.1, box), with metallic upper and lower
boundaries that are equipped with Perfectly Matched Layers (PMLs) [13].
Then slab modes of one or more suitable vertical cross-section(s) are calcu-
lated (functions of x in Figure 4.1), and one assumes that a superposition
of these modes gives a reasonable approximation to the true field profile
everywhere on the horizontal axis y. A variational restriction procedure
[31] then allows to extract a system of second order differential equations
for the unknown, now only y-dependent, coefficient functions. To find a
numerical solution to this system we use a Finite Element Method (FEM)
[18]. Transparent Influx Boundary Conditions (TIBCs) [68, 31, 89, 93] are
implemented at the left and right boundaries of the computational domain.
These permit to prescribe the given influx, while radiation from within the
CW can freely pass through the left and right boundary; at the top and
bottom of the CW, the PMLs make sure that scattered light is not reflected
back from the boundaries.
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Note that the present scheme uses an expansion basis quite similar to a
conventional BEP approach. Our expansions, however, are global; continu-
ity requirements at vertical interfaces are “automatically” satisfied. In com-
bination with a suitable selection of basis modes, the variational procedure
generates reasonable approximations already with relatively few expansion
terms. As an extreme case, expansions with only one vertical mode can be
viewed as a variant of an EIM. Contrary to the “standard” formulations, the
present approach allows to determine uniquely the effective indices, even if
a local slab does not support any guided modes. While in this chapter we
will only touch this particular case, more detailed remarks can be found in
Ref. [36].

Apart from the EIM and BEP versions cited before, relations with the
bidirectional mode propagation algorithm of Ref. [105] can be observed.
Global expansions are employed there as well; the fields are expanded into
Fourier series. While that standard basis allows for a highly efficient han-
dling, apart from the special case of a locally homogeneous region the basis
modes are nowhere exact solutions, such that also there a rather large num-
ber of terms might be required to generate acceptable approximations (so
far, however, we did not carry out a direct comparison of efficiencies).

A brief preliminary account on our method has been given in Ref. [42].
Section 4.2 describes the theoretical background in detail. We restrict the
formulation to TE polarization. In principle, the formalism for TM polar-
ized fields can be established, similar to the scalar analysis of guided TM
modes in Chapter 4. Examples and explicit equations for the situation with
single mode expansions are included in Ref. [36]. In Sections 4.2.2 and 4.2.3
we pay some attention to the PML related particularities of the expansion
basis, and to aspects of the numerical solution. Examples for a series of 2D
configurations show the validity of the method in Section 4.3.

4.2 2D scattering problems

The propagation of TE-polarized monochromatic light with vacuum wave-
length λ and wavenumber k = 2π/λ through a dielectric structure, defined
by the permittivity distribution ε(x, y), is governed by the 2D Helmholtz
equation for the z-component of the electric field:

∆Ez(x, y) + k2ε(x, y)Ez(x, y) = 0. (4.2.1)
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Solutions of Eq. (4.2.1) can also be formally found [30] as critical points of
the functional [101]

F(Ez) =

∫

[

(∇Ez(x, y))2 − k2ε(x, y)E2
z (x, y)

]

dx dy. (4.2.2)

In the following we will use the variational formulation only. While Eqs.
(4.2.1, 4.2.2) cover in principle the entire x-y-plane, practical computations
have to be confined to a computational window. Then suitable boundary
conditions need to be implemented, that allow any given influx to be pre-
scribed and radiation to freely leave the computational window.

4.2.1 Dimensionality reduction

We assume that the true field profile can be reasonably approximated at
every point on the horizontal y-axis by a superposition of 1D vertical slab
modes. Typically these are modes that are supported by (one or more)
vertical cross-sections. Note that each mode can, in principle, be taken
from a different reference slab waveguide, although in practice, many (or
all) may come from the same one. Then the principal field component Ez

is expanded as

Ez(x, y) =
m
∑

j=1

Xj(x) · Yj(y), (4.2.3)

where Xj is the principal component of a TE polarized mode from a ref-
erence slab waveguide, and Yj is an unknown coefficient function which
determines the amplitude of this mode at every position y.

By restricting the functional (4.2.2) to the set of functions in the form
(4.2.3), and taking variations with respect to all unknowns Yj, following a
similar procedure as in Chapter 2, we find the following system of second
order differential equations for the functions Yj:

FY′′(y) + M(y)Y(y) = 0. (4.2.4)

Here Y is a vector function formed of all functions Yj, and F and M are
matrices of dimension m×m with elements that are given by overlap inte-
grals involving the modes Xj, their derivatives, and the permittivity ε(x, y):

Fg,h =

∫

Xg(x)Xh(x) dx, (4.2.5)
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Mg,h(y) =

∫

[

k2ε(x, y)Xg(x)Xh(x)−X ′
g(x)X ′

h(x)
]

dx. (4.2.6)

Beyond (4.2.4), for a structure divided into slices, the stationarity of (4.2.2)
amounts to interface conditions of continuity of

Y(y) and Y′(y). (4.2.7)

Thus, through the approximation (4.2.3), the problem of finding the func-
tion Ez(x, y) : R

2 → C has been reduced to the task of identifying a vector
function Y(y) : R→ C

m.

4.2.2 Basis modes Xj defined using Perfectly Matched

Layers

Before we proceed to the actual solution procedure for the problem (4.2.4) in
section 4.2.3, we will introduce some short remarks on the the basis modes
together with the implementation of transparency for the upper and lower
computational window boundaries.

Perfectly matched layers

If one would use only Dirichlet boundary conditions at the top and bottom
window boundaries (Figure 4.1), light that is scattered from the structure
and reaches these boundaries would be completely reflected back into the
window. In order to model an open domain, first along the x-axis, we employ
the well-known Perfectly Matched Layers (PMLs) [3, 14, 4]. Although there
are other viewpoints on PMLs, we prefer to see them in the following way:
In these artificial layers, the coordinate is ‘stretched’ into the complex plane,
providing – at least analytically – absorption of the light without causing
reflections at the interior-PML boundary. We will use PMLs that act as
absorbers along the x direction, where inside the PML the coordinate x is
transformed as

x→ x− i

∫ x

0

σ(x̃) dx̃, (4.2.8)

meaning that dx and
∂

∂x
are transformed in the following way:

dx→ (1− iσ(x)) dx,
∂

∂x
→ 1

1− iσ(x)

∂

∂x
. (4.2.9)
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Let’s consider how a plane wave behaves in a PML. Under the given trans-
formations, a wave that would propagate with x-dependence exp(−i kxx) in
non-PML media will instead behave as exp(−i kx(x − i

∫ x

0
σ(x̃) dx̃)) – i.e.

if σ is positive, it is attenuated in the positive x direction. Similarly, a
wave with x-dependence exp(i kxx) in non-PML media, inside the PML is
attenuated in the negative x-direction. The consequence of this is that if
a PML is placed just before a totally reflecting boundary, waves impinging
on the boundary are first attenuated while traversing the PML toward the
boundary, reflected, and subsequently attenuated once more. This double
attenuation makes PMLs very powerful as absorbing boundary conditions
in simulations of Maxwell’s equations.

The parameter σ(x), sometimes called the PML strength, equals zero
outside the PML. Inside the PML, we choose it to increase linearly from
zero at the interior-PML interface, to a maximum value σmax at the outer
boundary of the domain. The reason for a slow increase in σ(x) is that even
though the PML is analytically reflectionless, numerically a quick spatial
variation of the PML strength can cause some reflections.

1D slab modes with PMLs

In the presence of PMLs that absorb in the x-direction, the modified Helm-
holtz equation (4.2.1) is

(

∂yy +
1

1− iσ(x)
∂x

1

1− iσ(x)
∂x + k2ε(x, y)

)

Ez(x, y) = 0 (4.2.10)

where σ(x) is as described at the end of the previous subsection.
In case the refractive index does not depend on y, ε(x, y) = εr(x), Eq.

(4.2.10) permits modal solutions of the form Ez(x, y) = X(x) e−iβy, where
the complex mode profile X satisfies the equation

(

1

1− iσ(x)
∂x

1

1− iσ(x)
∂x +

(

k2εr(x)− β2
)

)

X(x) = 0, (4.2.11)

for a complex propagation constant β.
If we consider a domain x ∈ [a, b] with zero Dirichlet boundary con-

ditions X(a) = 0 and X(b) = 0, solutions Xj of the eigenvalue equation
(4.2.11) are orthogonal in the following dot product [25]:

(u(x), v(x)) =

∫ b

a

u(x)v(x)(1− iσ(x))dx. (4.2.12)
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To solve Eq. (4.2.11), we employ a standard finite element (FE) method,
using a nonuniform 1D grid generated by a commercial package [18] with
linear basis functions and constant coefficients in each element. The finite
element scheme results in a generalized eigenvalue problem, the solutions of
which approximate the eigenfunctions Xj and eigenvalues β2

j of Eq. (4.2.11).
Using a FE scheme has the additional advantage that the overlap integrals
(4.2.5), (4.2.6) become trivial to calculate.

Use of PMLs in the expansion

In order to use PMLs in the theory described in the sections 4.2 and 4.2.1,
what is needed is to consistently apply the transformations given in Eq.
(4.2.9) – which formally affect Eq. (4.2.1) and the functional (4.2.2), and
consequently also the calculation of the overlap integrals in (4.2.5) and
(4.2.6). Here, weighting factors as in Eq. (4.2.12) appear as the only com-
plication required in practice.

4.2.3 Method of solution of the reduced problem

In general an integrated optics component can have an arbitrary permittiv-
ity distribution, e.g. tapers (Figure 4.10) or sinusoidal gratings. In section
4.2.3 we will detail a numerical method of solution based on the Finite Ele-
ment Method. Due to its general applicability and ease of implementation,
we will only use this solution technique in the numerical results that will
follow. At the same time for a large class of problems the system (4.2.4)
could be solved semi-analytically, as we will briefly describe in section 4.2.3.

Finite Element Method combined with Transparent Influx Bound-

ary Conditions

Using a Finite Element Method to solve the system of differential equations
allows for more freedom in the structure than the semi-analytic method
described below. For example, it can handle interfaces that do not run
parallel to x or y, like tapered waveguides.

While the system (4.2.4) is defined on the whole R, we have to restrict
our finite element computations to the finite numerical window. Since we
deal with influx interacting with optical structure, it is important to have
proper boundary conditions that represent the correct physical properties
of the exterior of the computational domain. Boundary conditions should
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allow influx to be prescribed and reflected fields to propagate through the
boundary without reflection. For this purpose we use so-called Transparent
Influx Boundary Conditions [30, 68, 89, 93, 34, 50].

As a requirement we have to choose the computational window y ∈ [l, r]
in such a way that outside of it the optical structure is invariant in the
y-direction. Then we can readily write a weak formulation for the system
(4.2.4) [50, 52]:

∫ r

l

V>(y)
[

F−1M(y)Y(y) + Y′′(y)
]

dy −

−V>(r)
[

Y′(r)−Y′
ext(r)

]

+ V>(l)
[

Y′(l)−Y′
ext(l)

]

= 0,(4.2.13)

where V is a continuous test vector-function defined on y ∈ [l, r]. Yext

represents a – still to be established – solution to the system (4.2.4) outside
the computational interval. Dashes indicate y derivatives, the symbol >

denotes the transpose. Note that Y is meant here to be defined exclusively
on the interior interval [l, r], and Yext – on the exterior regions (−∞, l] ∪
[r,∞). Where necessary, derivatives are to be taken as one-sided limits.

By requiring that Eq. (4.2.13) is satisfied for arbitrary V, one recovers
the system (4.2.4) for y ∈ [l, r], together with continuity Yext(l) = Y(l)
and Y(r) = Yext(r) of the functions (essential boundary conditions); and
continuity Y′

ext(l) = Y′(l) and Y′(r) = Y′
ext(r) of the derivatives across

the boundary (natural boundary conditions). Integrating by parts the term
with the second derivative transforms Eq. (4.2.13) to a standard weak form,
with simpler boundary terms:

∫ r

l

[

V>(y)F−1M(y)Y(y)− (V>(y))′Y′(y)
]

dy +

+V>(r)Y′
ext(r)−V>(l)Y′

ext(l) = 0. (4.2.14)

Now, the invariance along y of the permittivity distribution outside the
computational domain makes it possible to construct the exterior solution
Yext [93]. Since M is constant for y < l, a particular solution of Eq. (4.2.4)
in that region is

Yext(y) = a eiλyp for y < l, (4.2.15)

where a is an arbitrary amplitude, and λ and p satisfy the eigenvalue prob-
lem

Mp = λ2Fp. (4.2.16)



4.2 2D scattering problems 81

To proceed further we look a bit closer at the properties of the matrices
entering this eigenvalue problem. Alternatively to the expression (4.2.6),
we can consider

Mg,h(y) = β2
hFg,h + k2

∫

[

ε(x, y)− εh(x)
]

Xg(x)Xh(x) dx, (4.2.17)

derived from (4.2.6) using once integration by parts and the differential
equation for the mode profile Xh. If it happens that the waveguide with
the permittivity εh(x) and which supports the mode profile Xh, coincides
with the one that extends into the left exterior y < l, then to the left of
the computational window ε(x, y) = εh(x), and the second term of (4.2.17)
vanishes. Thus column h of the matrix M is equal to column h of the matrix
F times the square of βh, the propagation constant of mode h. Hence the
eigenvalue problem (4.2.16) permits a solution pair: eigenvalue λ2 = β2

h and
corresponding unit eigenvector p, with an entry 1 at position h. This means
that in the left exterior this particular mode Xh decouples from all other
modes that enter the expansion (4.2.3) and contributes to the solution for
y < l as

Ez(x, y) = (a1 eiβhy + a2 e−iβhy)Xh(x) + ... , (4.2.18)

with some coefficients a1 and a2. It implies that while all the other modes
can be coupled through the non-unit eigenvectors p, those that originally
were computed for the same waveguide as the one in the left exterior, are
not modified by the expansion (4.2.3). This property then makes it trivial
to prescribe the influx through the computational boundary in terms of the
modes of the incoming waveguide. Let us say we want to excite the optical
structure by the mode Xh with amplitude q, which implies that

Yext(y) =
∑

s=1,...,h,...,m

as eiλsyps + q e−iλhyph for y < l, (4.2.19)

with yet unknown coefficients as. We can rewrite this equation in matrix
form by defining a to be a column-vector of all coefficients as; E(y) – a

diagonal matrix with entries eiλsy; and P – a matrix, composed by the
vectors ps as columns:

Yext(y) = PE(y)a + q e−iλhyph. (4.2.20)
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Next, since the continuity conditions (4.2.7) require that Yext(y) = Y(y)
at y = l, we can express these coefficients in terms of the interior solution
Y at the boundary:

a = E−1(l)P−1
[

Y(l)− q e−iλhlph

]

. (4.2.21)

These coefficients then permit to express also the derivative of the exterior
solution Y′

ext(l) in terms of the interior solution Y(l) at the boundary.
Differentiating Eq. (4.2.19) gives

Y′
ext(y) =

∑

s=1,...,h,...,m

as i λs ei λsyps − i qλh e−iλhyph = (4.2.22)

= iPΛE(y)a− i qλh e−iλhyph = (4.2.23)

= iPΛE(y)

[

E−1(l)P−1
[

Y(l)− q e−iλhlph

]

]

− i qλh e−iλhyph,(4.2.24)

where Λ is a diagonal matrix with diagonal entries λs. So at the boundary
y = l we have after some simplifications

Y′
ext(l) = iPΛP−1Y(l)− i 2qλh e−iλhlph. (4.2.25)

Inserting this into the weak formulation (4.2.14), together with an analo-
gous expression for Y′

ext(r) at the right boundary, we are finally able to
restrict the weak formulation to the computational domain only, with all
information about the exterior hidden inside the matrices P and Λ.

Semi-analytic solution method

Due to common techniques of fabrication, many components of integrated
optical devices have a piecewise constant rectangular permittivity distribu-
tion, e.g. the rectangular grating of Figure 4.2. This property of the de-
vice geometry results in a piecewise constant matrix M(y). Therefore the
general solution of Eq. (4.2.4) can be written out on every interval where
the permittivity is invariant in the y-direction. These local solutions then
can be matched across the interfaces according to the interface conditions
(4.2.7). We refer to Chapter 2 and Ref. [35] for more detailed remarks on
such approaches.
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4.2.4 Relation with the Effective Index Method

Regarding the relation between the present approach and “conventional”
effective index methods, it is instructive to look at the expansion (4.2.3)
with only a single term, Ez(x, y) = X(x)Y (y). Here X will typically be
the fundamental guided mode of a suitable reference slab (Figure 4.1), that
is likely to represent a major part of the actual physical field. For the
specific case of guided modes we can use an unbounded domain in x without
PMLs. Let εr(x) be the permittivity of that reference slab, and βr be the
propagation constant, such that X satisfies the slab mode equation

X ′′(x) + k2εr(x)X(x) = β2
r X(x). (4.2.26)

Then the system (4.2.4) reduces to the following EIM-like equation for the
function Y :

Y ′′(y) + k2εeff(y)Y (y) = 0, (4.2.27)

with the effective permittivity

εeff(y) =
β2

r

k2
+

∫

(ε(x, y)− εr(x))X2(x) dx
∫

X2(x) dx
. (4.2.28)

Similarly to the standard EIM, in the reference slice, where ε(x, y) = εr(x),
the effective permittivity is that of the mode X. However, in other slices
it is modified by the difference between the local permittivity and that
of the reference slice, weighted by the local intensity of the mode profile.
So, contrary to the EIM, even in slices where no guided modes exist, an
effective index can still be uniquely defined. Note that it may turn out that
effective permittivity found from (4.2.28) is negative. We refer to [36] for a
more detailed elaboration of this viewpoint, including a series of numerical
examples.

4.3 Numerical results

The presented theory is implemented with the aid of the COMSOL Multi-
physics package [18] for grid generation and for setting up the finite element
equations in the y-direction; the slab modes are calculated by means of an
in-house developed finite element code. This section shows and discusses
results on three structures: A waveguide Bragg grating, a perturbed defect
cavity in a grating, and a vertical taper. The acronym VEIM (variational
effective index method) shall be used to indicate results of our approach.
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4.3.1 Waveguide Bragg grating

The waveguide Bragg grating of Figure 4.2 served as a benchmark struc-
ture to compare independently developed 2D numerical codes in the COST
268 modelling task [106]. The grating is formed by etching 20 rectangular
grooves into a Si3N4/SiO2 slab waveguide. We are interested in the response
of the waveguide grating, i.e. the relative guided wave transmission T and
reflection R, for the incoming fundamental TE mode at varying vacuum
wavelengths λ.

Figure 4.2: A waveguide Bragg grating, benchmark structure of Refs. [106],
[6] and [33].

Slab modes are calculated on a computational window x ∈ [−3, 3]µm
with zero Dirichlet boundaries, coated with 1µm thick PMLs, whose strength
increases linearly towards the boundaries from 0 to σmax = 0.8. The ex-
pansion uses 40 slab modes of the input waveguide, which are calculated
with 320 linear elements in the vertical direction. The horizontal extent
y ∈ [−1, 9]µm of the computational window is discretized into 352 quadratic
finite elements.

Figure 4.3 shows a comparison of results of the present method (VEIM)
to those generated by two other modelling schemes. The curves labelled
QUEP are computed using the semi-analytic Quadridirectional Eigenmode
Propagation scheme from Ref. [33], and the label BEP denotes results from
a Bidirectional Eigenmode Propagation method with PMLs at the bound-
aries from Ref. [106]. The agreement between the present method and the
reference results is excellent.
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Figure 4.3: Spectral propagation properties, modal reflection R and trans-
mission T , for the grating of Figure 4.2, calculated by three modelling meth-
ods. Groove depth d: (a) 125nm, (b) 375nm and (c) 625nm.

4.3.2 Waveguide Bragg grating perturbed by a nano-

sized probe

The authors of Ref. [37] describe a grating with a defect cavity. This struc-
ture exhibits a bandgap in which the transmission is very small, with a
narrow transmission peak inside it, due to the defect. The spectrum of this
cavity resonance can be shifted in wavelength, while also being deformed,
by the presence of a thin silicon probe that is placed on top of it. Figure 4.4
introduces the structure. For the VEIM simulations, the calculation of the
slab modes is based on a discretization of the slab profile (outside the holes)
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into 736 linear finite elements; 280 nonuniformly distributed quadratic ele-
ments are used to solve the equations along the y-axis.

Figure 4.4: A waveguide Bragg grating with defect, perturbed by a thin
vertical Si probe, from Ref. [37].
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Figure 4.5: Resonant transmission through the defect grating of Figure 4.4,
for different computational methods.

First we consider the grating without the probe. Since the present
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method with one mode in the expansion requires a similar computational
effort as the Effective Index Method, we compare results of those two meth-
ods. As mentioned in section 4.2.4, the effective index in a hole in the struc-
ture is not uniquely defined, since no guided mode exists there. Therefore,
we choose three values that seem reasonable – the highest local refractive
index 1.445 (the substrate), the lowest refractive index 1.0 (air), and an
in-between value of 1.2. Figure 4.5 shows the transmission and reflection
spectra resulting from these choices in a standard EIM, results from our
VEIM with 1 and 80 modes in the expansion, and finally, as a reference,
spectra calculated using the QUEP method [33].

The VEIM, m = 80 results virtually coincide with the reference results.
Using only one mode in the expansion (VEIM, m = 1) shifts the spectrum to
lower wavelengths and removes the loss mechanisms from the simulations,
so the peak in the spectrum is more pronounced, and the reflection and
transmission add up to unity. The EIM results are likewise lossless, and their
spectra are all shifted to higher wavelengths – and the spectral peaks for
all reasonable values of the effective index in the hole regions are displaced
from the reference results much further than the VEIM, m = 1 results.
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Figure 4.6: Convergence of transmission T and reflection R at wavelength
λ = 1.54µm versus the number of modes m in VEIM simulations of the
grating of Figure 4.4, for absent tip.

To investigate how many modes are needed to accurately simulate a
structure like this grating, we perform a convergence analysis in the number
of modes in the expansion. We choose a wavelength of 1.54µm, which lies on
the flank of the resonance; this is where the sensitivity of transmission and
reflection to numerical errors is expected to be the highest. Figure 4.6 shows
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the results. Starting from 40 modes, the levels are quite stable already, and
at 80 modes we may consider the calculations to be converged.

Figure 4.7 shows field plots of the grating at the resonance wavelength of
1.5387µm, for VEIM expansions with one, ten and eighty modes. With one
mode, there is no radiation, and the transmission is low. Using ten modes
already allows for significant radiation, but the reflection and transmission
values are still relatively far from the converged values.
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Figure 4.7: Absolute value of the field profile Ez for the grating of Figure 4.4,
without the tip, at the resonance wavelength λ = 1.5387µm. (a) a VEIM
simulation with only one mode in the expansion; (b) VEIM expansion with
10 modes; (c) the converged results for 80 modes.

When the defect cavity is perturbed with a silicon probe, the spectrum
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shifts and deforms. Figure 4.8 shows the transmission spectrum with the
probe, placed near one end of the cavity, as indicated in Figure 4.4. Again,
the VEIM results are very close to the reference QUEP data. Figure 4.9
shows the field for the structure with the tip at a wavelength of 1.5387µm,
the resonance wavelength of the unperturbed structure. The field clearly is
disturbed strongly. Remarkably, one can see the fundamental mode of the
silicon probe running upward – even though the present method essentially
only propagates modes horizontally. The PMLs allow for radiation to leave
the domain vertically.
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Figure 4.8: Spectral transmission T and reflection R through the defect
grating of Figure 4.4 if the probe is present. VEIM and QUEP results are
compared.
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Figure 4.9: Absolute value of the field profile Ez of the grating of Figure 4.4
with the probe on top, at the resonance wavelength λ = 1.5387µm of the
original (unperturbed) structure. The probe switches the device to a low-
transmission state.
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4.3.3 Taper

Our last example is the vertical taper of Figure 4.10. We are interested in
the transmission from the fundamental mode of the left-hand waveguide to
the fundamental mode of the thicker right-hand waveguide.

Figure 4.10: A vertical taper in Si3N4 on SiO2 with air cladding, simulated
at a wavelength of 1.55µm. The taper is 4µm long and tapers linearly from
150 to 300nm thickness.
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Figure 4.11: Absolute value of the field profile Ez of the vertical taper of
Figure 4.10. (a) The present method, a VEIM expansion with 10 modes
from the left (thin) guide, and 1 mode from the right (thick) one. (b) FDTD
reference results.

As discussed in section 4.2.3, in order to properly influx a mode, and
also to analyze the outgoing power of a mode, it is beneficial to have those
modes in the expansion of the vertical field. Therefore, we expand the field
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into a number of modes of the left-hand waveguide plus the fundamen-
tal mode of the right-hand guide. The maximum PML strength is set to
σmax = 0.6. The vertical basis modes are calculated using 368 linear finite
elements; 608 quadratic elements discretize the horizontal computational
window. Figure 4.11 shows the absolute value of the Ez field for the present
method, with only 10 modes from the left waveguide, together with rig-
orous numerical results, obtained with the Finite-Difference-Time-Domain
(FDTD) solver from a commercial package [11]. Even for such a low number
of modes in the expansion, the fields match remarkably well.

Results of a convergence analysis for the taper structure are given in
Figure 4.12. We take one mode of the right-hand waveguide in the expansion
and vary the number of modes m from the left-hand waveguide. Already
with 6 modes from the left-hand guide the result is well within 1% of the
reference results, and with 10 modes the transmission can be said to be
converged.
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Figure 4.12: VEIM simulations of the taper of Figure 4.10, convergence:
The plot shows the guided wave transmission versus the number of modes
from the thin waveguide in the VEIM expansion. The thicker waveguide
contributes one mode to the expansion.

4.4 Concluding remarks

The VEIM algorithm, as proposed in this chapter, constitutes a viable al-
ternative to established quasi-analytical solvers for optical Helmholtz prob-
lems, so far in 2D. In particular, the method has similarities to and im-
proves upon the popular EIM and BEP schemes: As in a standard EIM
(though with less heuristics involved), rough approximations can be ob-
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tained through expansions with one or only very few terms, at very low
computational cost. In an intermediate regime already quite acceptable
results emerge with only a very moderate number of expansion terms, as
shown in some of our examples. VEIM calculations with a larger number of
basis modes yield converged results, just as the established BEP schemes.
Contrary to the BEP method with PMLs, however, our solutions are contin-
uous everywhere; no discontinuities appear on the interfaces between slices,
which is a problem for BEP especially when using a low number of modes,
and the peaks near the PML boundaries that can appear in standard BEP
[29] have not been observed in the current results.

As an alternative to the numerical solution presented here, a semi-
analytic solution method for structures with piecewise constant rectangular
refractive index distributions could be established, that might be more effi-
cient than the present numerical implementation of the algorithm for those
specific cases.

The present numerical variant, however, also serves to obtain experi-
ences for an extension of the approach towards 3D. After a dimensionality
reduction using vectorial slab modes, systems of partial differential equa-
tions emerge in two spatial dimensions, which require a numerical treatment
anyway. More detailed discussion follows in Chapter 5.



5
3D scattering problems

We develop a method for 3D-to-2D dimensionality reduction of scat-

tering problems in photonics, based on a global slab mode expansion.

The technique utilizes a variational technique, based on the vectorial

3D Maxwell’s equations. One may use one single mode in the ex-

pansion, where, contrary to the ‘standard’ Effective Index Method,

the effective parameters of the reduced problem are always rigorously

defined. Adding more modes to the expansion increases the accuracy

and enables radiation from the structure to also be taken into account.

Calculations on a straight silicon on insulator waveguide validate the

method. Results for a photonic crystal slab waveguide show that this

approach predicts the location of the bandgap and other spectral fea-

tures much more precisely than any ’standard’ EIM approximation.

5.1 Introduction

In the design of photonic integrated circuits, computational tools that cal-
culate the response of a three-dimensional structure to a given influx of light
are needed. However, fully vectorial 3D simulations of scattering problems
in photonic components are often almost prohibitively CPU-time and mem-
ory intensive, so one would opt for reduced models that capture the essence
of the full 3D structure, while being computationally much more efficient;
especially while scanning the parameter space of the device, approximate
results may be sufficiently good. In later stages of a design process, more
rigorous calculations would be used for the verification and fine-tuning of
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the device.

A popular technique to perform approximate calculations is the so-called
Effective Index Method (EIM) [21], [110], [78], which reduces simulations of
3D structures to two spatial dimensions by calculating effective parameters
using local guided modes. However, frequently, as is the case for photonic
crystal slabs (Figure 5.1, left), no guided mode exists in a cross-section and
the effective parameters for the 2D simulation are only rather ambiguously
defined, i.e. rely more or less on guesswork.

Figure 5.1: By using a TE slab mode of a reference slice with permittivity
εr(x) as an approximation for the x-dependence of the field, the simulation
of wave propagation in the structure is reduced from 3D to 2D.

More rigorous methods are mostly purely numerical (e.g. the Finite Ele-
ment or Finite Difference Method), or based on expansions in the modes of
2D cross-sections (Eigenmode Expansion Method [26]). A commonly used
technique is Finite Difference Time Domain (FDTD) [97], which directly
solves the time evolution of Maxwell’s equations.

This chapter proposes a simulation method for vectorial 3D frequency
domain optical scattering problems. It reduces the spatial dimensionality
of the problem by expanding the vectorial field along one spatial dimension
into the modes of one or more slab waveguides (1D refractive index profiles),
typically vertical cross-sections through the 3D structure at locations where
one expects most of the optical field to be concentrated. The same expansion
is utilized everywhere in the domain. Subsequently, a variational procedure
leads to the equations for the amplitudes of all vector components of these
slab modes in the other two spatial dimensions, which are subsequently
reduced to a system involving just two components. A finite element scheme
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combined with Perfectly Matched Layers (PMLs) [3], [14] and Transparent
Influx Boundary Conditions (TIBC) [68], [89], [94] is employed to solve the
resulting equations.

When using only one slab mode in the expansion, the computational
effort of the presented method is comparable to that of a standard EIM.
However, contrary to the EIM, the coefficients in the resulting 2D equations
are rigorously defined a priori, even when no guided mode exists in some
cross-section. In order to also model interactions between vertical modes,
and radiation leaving the structure vertically, more modes are needed in the
expansion – increasing both the computational effort and the accuracy of
the method.

In many ways, this chapter can be seen as a generalization of work re-
ported in the previous chapters and published in [40], [36], [43], [44] and [48],
dealing with a vectorial mode solver and a 2D scattering solver. Both meth-
ods are based on the same expansion and variational formalism as presented
in this chapter, and the equations resulting from the current 3D scattering
problem can be transformed into the ones relevant for the two aforemen-
tioned methods by applying the proper restrictions – in both cases requiring
that the structure is uniform in the z-direction, with the additional restric-
tion that for the 2D scattering solver the fields also do not depend on z (i.e.
that propagation happens purely in the x-y plane). After the interior equa-
tions are established, different boundary conditions further distinguish the
mode and 2D scattering solvers. Furthermore, the mode analysis procedure
from Chapter 3 is needed in the current work to implement the transparent
boundary conditions.

5.2 Variational form of 3D scattering prob-

lems in optics

The time-harmonic propagation of a given optical influx with frequency ω
through a linear, charge and current free medium, characterized by the per-
mittivity distribution ε(x, y, z), is governed by the Maxwell’s curl equations

∇× E = −iωµ0µH, ∇×H = iωε0εE, (5.2.1)

for the electric and magnetic fields E = (Ex, Ey, Ez) and H = (Hx, Hy, Hz)
respectively. ε0 and µ0 are the vacuum permittivity and permeability. The
relative permeability µ is assumed to be one, as is appropriate for most
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materials at optical frequencies. Solutions (E,H) of equations (5.2.1) are
stationary points of the functional [101]

F(E,H) =

∫

(

E · (∇×H) + H · (∇×E)− iωε0εE
2 + iωµ0µH2

)

dx dy dz.

(5.2.2)
In the following we will work with this variational formulation only.

5.3 General approximation

We expand each field component F ∈ {Ex, Ey, Ez, Hx, Hy, Hz} of the vec-
torial field profiles E and H as a superposition of some known functions
XF

j (x) of the x-coordinate, times some unknown functions P F
j (y, z), which

basically define the amplitudes of the corresponding components XF
j (x)

everywhere on the plane (y, z) :

F (x, y, z) =
∑

j

XF
j (x)P F

j (y, z). (5.3.3)

Just as for the vectorial mode solver in Chapter 3, for the functions XF
j we

choose certain components of slab modes. These modes are computed for
a number (one or several) of slab waveguides that are defined by vertical
permittivity distributions εr(x) at some locations in the (y, z)-plane. In
the following these special waveguides we will call reference (r) waveguides
(Figure 5.1). For the moment we will assume that we know all neces-
sary information about the functions XF

j and derive the equations for the
coefficient-functions P F

j using the variational methods [101], [31].

By inserting the approximated field (5.3.3) into the functional (5.2.2) and
by taking variations with respect to all unknown functions P F

j , a system of
first order differential equations for PF – the vector of all unknown functions
P F

j related to the component F – emerges:



5.3 General approximation 97

A11
∂

∂y

PHz + A12
∂

∂z

PHy + A13P
Ex = 0, (5.3.4)

A21P
Hz + A22

∂

∂z

PHx + A23P
Ey = 0, (5.3.5)

A31P
Hy + A32

∂

∂y

PHx + A33P
Ez = 0, (5.3.6)

A41
∂

∂y

PEz + A42
∂

∂z

PEy + A43P
Hx = 0, (5.3.7)

A51P
Ez + A52

∂

∂z

PEx + A53P
Hy = 0, (5.3.8)

A61P
Ey + A62

∂

∂y

PEx + A63P
Hz = 0. (5.3.9)

The elements of the matrices A are of the following form:

A11(k, j) = 〈XEx

k ,XHz

j 〉 A12(k, j) = −〈XEx

k ,X
Hy

j 〉 A13(k, j) = −iω〈XEx

k , εXEx

j 〉
(5.3.10)

A21(k, j) = −〈XEy

k , (XHz

j )′〉 A22(k, j) = 〈XEy

k ,XHx

j 〉 A23(k, j) = −iω〈XEy

k , εX
Ey

j 〉
(5.3.11)

A31(k, j) = 〈XEz

k , (X
Hy

j )′〉 A32(k, j) = −〈XEz

k ,XHx

j 〉 A33(k, j) = −iω〈XEz

k , εXEz

j 〉
(5.3.12)

A41(k, j) = 〈XHx

k ,XEz

j 〉 A42(k, j) = −〈XHx

k ,X
Ey

j 〉 A43(k, j) = i ωµ〈XHx

k ,XHx

j 〉
(5.3.13)

A51(k, j) = −〈XHy

k , (XEz

j )′〉 A52(k, j) = 〈XHy

k ,XEx

j 〉 A53(k, j) = iωµ〈XHy

k ,X
Hy

j 〉
(5.3.14)

A61(k, j) = 〈XHz

k , (X
Ey

j )′〉 A62(k, j) = −〈XHz

k ,XEx

j 〉 A63(k, j) = iωµ〈XHz

k ,XHz

j 〉
(5.3.15)

All brackets 〈, 〉 here mean an integration over x only: 〈a, b〉 =
∫

ab dx,
the dashes ′ denote derivatives. Note that only matrices A13, A23 and
A33 depend on the y and z-coordinates, the other matrices are constant
everywhere in (y, z)-plane.

Continuity conditions for

nyA11P
Hz + nzA12P

Hy , nzA22P
Hx , nyA32P

Hx (5.3.16)

and

nyA41P
Ez + nzA42P

Ey , nzA52P
Ex , nyA62P

Ex (5.3.17)
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at dielectric interfaces also follow from the restriction procedure. The vector
(ny, nz) denotes a normal to the interface in the (y, z)-plane.

5.4 Reduced problem

Due to common fabrication technologies the light in integrated optics com-
ponents mainly propagates along the initial substrate, which in our case
is parallel to (y, z)-plane, but in general in that plane without any pre-
ferred direction of propagation. Therefore we choose to approximate those
components of electric (and magnetic) field that lie in this plane by the

same functions X, meaning that we choose the functions X
Ey

j the same as

XEz

j , and X
Hy

j the same as XHz

j . Hence the following relations between the
matrices A arise:

A>
12 = −A52 = A62 = −A>

11, (5.4.18)

A31 = −A21, A33 = A23; (5.4.19)

A>
42 = −A22 = A32 = −A>

41, (5.4.20)

A61 = −A51, A63 = A53. (5.4.21)

Interestingly it turns out that by algebraic manipulations the system of
first order differential equations for six unknown vector functions (5.3.4)-
(5.3.9), can be reduced to a system of second order differential equations for
only two unknown vector functions. Additionally using the matrix relations
(5.4.18)-(5.4.21), the reduced system reads

∂

∂y

(

D1
∂

∂y

u−D2
∂

∂z

u
)

+
∂

∂z

(

D1
∂

∂z

u + D2
∂

∂y

u
)

+ D3u = 0, (5.4.22)

or, using a more compact notation,

∇ ·
(

D∇u
)

+ D3u = 0, (5.4.23)

where

u =

(

PEx

PHx

)

, D =

(

D1 −D2

D2 D1

)

, (5.4.24)

and block-(anti)-diagonal matrices D1,2 and 3 have the form

D1 =

(

B1 0

0 C1

)

, D2 =

(

0 B2

C2 0

)

, D3 =

(

B3 0

0 C3

)

,

(5.4.25)
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where

B1 = A>
52

(

A53 + A51A
−1
23 A21

)−1
A52, (5.4.26)

B2 = A>
52A

−1
53 A51

(

A23 + A21A
−1
53 A51

)−1
A22, (5.4.27)

B3 = A13, (5.4.28)

and

C1 = A>
22

(

A23 + A21A
−1
53 A51

)−1
A22, (5.4.29)

C2 = A>
22A

−1
23 A21

(

A53 + A51A
−1
23 A21,

)−1
A52 (5.4.30)

C3 = A43. (5.4.31)

The continuity conditions (5.3.16)-(5.3.17) also turn into continuity of

u and nD∇u, (5.4.32)

where n is a m × 2m matrix, with the left-most m ×m part being just a
diagonal matrix with ny on diagonal, and, similarly, the right-most m×m
part being a diagonal matrix with entries nz.

Once the solution of the problem (5.4.23), (5.4.32) is at hand, the other
functions P can be found as

PEy =−A−1
23 A21

(

A53 + A51A
−1
23 A21

)−1
A52

∂

∂y

PEx−

−
(

A23 + A21A
−1
53 A51

)−1
A22

∂

∂z

PHx , (5.4.33)

PHz =
(

A53 + A51A
−1
23 A21

)−1
A52

∂

∂y

PEx−

−A−1
53 A51

(

A23 + A21A
−1
53 A51

)−1
A22

∂

∂z

PHx , (5.4.34)

PHy =−
(

A53 + A51A
−1
23 A21

)−1
A52

∂

∂z

PEx−

−A−1
53 A51

(

A23 + A21A
−1
53 A51

)−1
A22

∂

∂y

PHx , (5.4.35)

PEz =−A−1
23 A21

(

A53 + A51A
−1
23 A21

)−1
A52

∂

∂z

PEx+

+
(

A23 + A21A
−1
53 A51

)−1
A22

∂

∂y

PHx . (5.4.36)

and the complete field consequently can be constructed according to (5.3.3).
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5.5 Weak formulation

To solve the system of differential equations (5.4.23) together with interface
conditions (5.4.32) we will use a Finite Element Method, since it accurately
takes into account the geometry of the structure. If Ω is the computational
window and ∂Ω is its boundary, we can write a weak formulation of (5.4.23)
as
∫

Ω

v>[∇ ·
(

D∇u
)

+ D3u
]

dΩ−
∫

∂Ω

v>nD
[

∇u−∇uext

]

d∂Ω = 0 (5.5.37)

where v(y, z) is a continuous test vector-function defined on Ω, and the ma-
trix n is defined as in Eqn. (5.4.32) with an outward normal (ny, nz). Here
u(y, z) and uext(y, z) are the solution of (5.4.23) in the interior and the exte-
rior of Ω correspondingly. In the following we will choose the computational
window such, that in some neighbourhood of the boundary the structure is
uniform in the direction perpendicular to the boundary, meaning that the
matrix D(y, z) does not have any jumps across ∂Ω.

By requiring that the equation (5.5.37) is satisfied for an arbitrary func-
tion v(y, z), one recovers the system (5.4.23) together with continuity con-
ditions (5.4.32). Integrating by parts the first term of (5.5.37) turns it into
the standard weak form:

∫

Ω

[

−∇v>D∇u + D3u
]

dΩ +

∫

∂Ω

v>nD∇uext d∂Ω = 0. (5.5.38)

5.6 Transparent Influx Boundary Conditions

In the following we are going to derive transparent influx boundary condi-
tions that allow light to leave the computational window boundaries undis-
turbed, with the possibility to prescribe an influx through the boundary.
Since all boundaries can be treated in the same way, we will only discuss
the left-hand boundary of the domain z = l (Figure 5.2). We assume
that any waveguides in the exterior run perpendicular to the computational
window boundary. It means that the permittivity ε(y, z) in the exterior
cross-section is invariant in the z-direction and is identical to the one on
the western boundary. Furthermore, in the exterior at y = b and y = t, the
bottom and top of the calculation window, PEx and PHx will be required to
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vanish. Then a particular solution of (5.4.23) in the left exterior uext(y, z)
can be represented as

uext(y, z) = f eiβzy(y) (5.6.39)

with some coefficient f , and the pair β, y satisfying the following quadratic
eigenvalue problem:

(

D1y
′ + iβD2y

)′
+ D3y = β2D1y + iβD2y

′. (5.6.40)

Figure 5.2: The calculation window. On the boundaries of the domain
Transparent Influx Boundary Conditions are used (or Transparent Bound-
ary Conditions if there is no influx). In the corners of the window, and
extending into the exterior, we can place PML sections to absorb light hit-
ting the corner points of the domain.

Note that the coupling between the PEx and PHx terms only occurs in the
term with β. This eigenvalue problem is absolutely the same as in equation
(20) in the vectorial mode solver paper [43] (eqn. (3.5.20) in this thesis).
This is natural since basically in the exterior we are looking for vectorial
modes propagating perpendicular to the computational window boundary.
Solutions of this eigenvalue equation correspond to modes running in the
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positive or negative z-direction; we will denote those as jin and jout corre-
spondingly. Hence the field in the left exterior can be represented as

uext(y, z) =
∑

jout

fjout eiβjoutzyjout(y) +
∑

jin

fjin eiβjinzyjin(y) (5.6.41)

with prescribed amplitudes fjin of the incoming field, as the influx. Or in
matrix notation

uext(y, z) = Yout(y)Eout(z)fout + Yin(y)Ein(z)fin, (5.6.42)

where Yout(y) – a matrix, composed of vectors yjout(y) as columns, Eout(z)

– a diagonal matrix with entries eiβjoutz , and fout – a column-vector of all
coefficients fjout ; the same is valid for the terms with jin.

Since the solution of (5.4.23) should be continuous, at the boundary
z = l the solution in the exterior uext(y, z) should match that of the interior
u(y, z):

u(y, l) = Yout(y)Eout(l)fout + Yin(y)Ein(l)fin. (5.6.43)

Hence the unknown coefficients fout could be found as a function of the
solution of the interior problem at the boundary. By multiplying both sides
of (5.6.43) by Y>

out(y) and integrating over y, one obtains
{

Y>
out(y),uext(y, l)

}

=
{

Y>
out(y),Yout(y)

}

Eout(l)fout+

+
{

Y>
out(y),Yin(y)

}

Ein(l)fin, (5.6.44)

where the symbol {·, ·} means integration over y. Now, the matrix
{

Y>
out(y),Yout(y)

}

is invertible, since it is positive semi-definite, and we
assume that the vectors yjout(y) are not linearly dependent. Hence mul-
tiplying both sides of (5.6.44) by the inverse of this matrix, we get the
unknown amplitudes of the outgoing modal fields

fout =E−1
out(l)

{

Y>
out(y),Yout(y)

}−1·

·
[

{

Y>
out(y),u(y, l)

}

−
{

Y>
out(y),Yin(y)

}

Ein(l)fin

]

. (5.6.45)

Now we can express the function ∇uext(y, z) at the boundary z = l
only in terms of the interior solution u(y, z) also at the boundary. After
differentiating (5.6.42) and using the relation (5.6.45) we can write:

∇uext(y, l) =

(

Yout(y)ΛoutEout(l)fout + Yin(y)ΛinEin(l)fin

Y′
out(y)Eout(l)fout + Y′

in(y)Ein(l)fin

)

=
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=





































Yout(y)Λout

{

Y>
out(y),Yout(y)

}−1{
Y>

out(y),u(y, l)
}

−
−
[

Yout(y)Λout

{

Y>
out(y),Yout(y)

}−1·

·
{

Y>
out(y),Yin(y)

}

−Yin(y)Λin

]

Ein(l)fin

Y′
out(y)

{

Y>
out(y),Yout(y)

}−1{
Y>

out(y),u(y, l)
}

−
−
[

Y′
out(y)

{

Y>
out(y),Yout(y)

}−1·

·
{

Y>
out(y),Yin(y)

}

−Y′
in(y)

]

Ein(l)fin





































(5.6.46)

where Λout (in) is a diagonal matrix with entries iβjout (in)
and the symbol ′

here means the derivative with respect to y.

Substitution of the expression for the ∇uext(y, l) (5.6.46) into the weak
formulation (5.5.38) restricts the weak formulation to the computational
domain Ω only.

5.6.1 Remarks

The mode with propagation constant βj is an approximate mode of the out-
going waveguide and depends on the particular expansion (5.3.3). Chapter 3
contains several examples on the convergence of the approximate mode pro-
file together with the propagation constant. Nevertheless in this chapter we
will assume that the modal solution of (5.6.40) represents the true mode
profile well enough, and therefore for the influx we will simply consider this
modal solution.

Furthermore, it can readily be seen that inverting the sign of β in (5.6.40)
(i.e. a reversal of the propagation direction) also gives a solution – in which
all the eigenfunction’s PEx also get a minus sign. Thus, contrary to the
systems described in [68], [89], [31], [93], in this case the left-travelling
eigenfunctions are not equal to the right-travelling ones, even though their
eigenvalues are just each others negative. From a physical point of view, we
can understand the fact that the eigenfunctions change – the z-component
of the Poynting vector should, after all, change sign – which is accomplished
exactly by the transformation of the eigenfunction that we observe here.
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5.7 Choice of the expansion basis

Similarly to the vectorial mode problem of Chapter 3, here a five component
approximation (called VEIM5 in that chapter) will be used. The TE basis

mode number j with mode profile components χ
Ey

j , χHx

j , χHz

j contributes
to the expansion of components Ey, Ez, Hx, Hy and Hz. Likewise, the

TM basis mode number l with mode profile components χ
Ey

l , χHx

l , χHz

l

contributes to the expansion of components Ex, Ey, Ez, Hy and Hz, such
that the complete expansion reads

(

Ex, Ey, Ez

Hx, Hy, Hz

)

(x, y, z) =

=
∑

j∈TE

(

0, χ
Ey

j (x)P
Ey

j (y, z), χ
Ey

j (x)PEz

j (y, z)

χHx

j (x)PHx

j (y, z), χHz

j (x)P
Hy

j (y, z), χHz

j (x)PHz

j (y, z)

)

+

+
∑

l∈TM

(

χEx

l (x)PEx

l (y, z), χEz

l (x)P
Ey

l (y, z), χEz

l (x)PEz

l (y, z)

0, χ
Hy

l (x)P
Hy

l (y, z), χ
Hy

l (x)PHz

l (y, z)

)

.

(5.7.47)
Note that the electric and magnetic y- and z-components are approximated
by the same vertical functions as assumed in 5.4.

While here we use only this type of the expansion basis, we do not claim
that it represents the true solution the best. It is in principle possible to try
other functions X in the expansion. As an example, one might consider to
use Fourier basis functions. Then the present approach would become some
sort of 3D generalization of the 2D method presented in Ref. [105]. Yet
another possibility is to use the three component approximation (VEIM3)
outlined in Chapter 3.

5.8 Relation with the Effective Index Method

In the following section we are going to show what happens if only a single,
TE or TM, slab mode is taken into account. Using the variational reasoning
developed above we will rigorously derive an analog to the Effective Index
Method.
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5.8.1 TE polarization

Let us consider only one TE slab mode propagating in the direction z with
propagation constant βr from a reference slice with permittivity distribution
εr(x):

(

Ex, Ey, Ez

Hx, Hy, Hz

)

slab

(x, z) =

(

0, χEy(x), 0
χHx(x), 0, χHz(x)

)

· e−iβrz,

(5.8.48)
The principal electric component χEy satisfies the equation

(

χEy(x)
)′′

+ k2εr(x)χEy(x) = β2
r χ

Ey(x) (5.8.49)

with vacuum wavenumber k = 2π/λ. The remaining two nonzero compo-
nents of the mode profile can be derived directly from χEy .

We assume that this vertical shape constitutes an adequate approxima-
tion for the (polarized) optical field in the 3D structure

(

Ex, Ey, Ez

Hx, Hy, Hz

)

complete

(x, y, z) =

=

(

0, χEy(x)PEy(y, z), χEy(x)PEz(y, z)
χHx(x)PHx(y, z), χHz(x)PHy(y, z), χHz(x)PHz(y, z)

)

,

(5.8.50)
with some unknown functions P . Note that the y- and z-components of the
electromagnetic field are approximated by the same functions χ.

Using the relations between the slab mode components, from (5.4.23) it
follows that PHx satisfies the following second order differential equation

(

∂y

1

εeff(y, z)
∂y + ∂z

1

εeff(y, z)
∂z + k2

)

PHx(y, z) = 0 (5.8.51)

with

εeff(y, z) =
β2

r

k2
+

∫

(ε(x, y, z)− εr(x))
(

χEy(x)
)2

dx
∫

(

χEy(x)
)2

dx

. (5.8.52)

This looks exactly like a 2D TM Helmholtz equation with (effective)
permittivity εeff, and similar to what is used in the standard Effective In-
dex Method. In the reference slice, where ε(x, y, z) = εr(x), the effective



106 Chapter 5: 3D scattering problems

permittivity is equal to the squared effective mode index β2
r /k

2. Elsewhere,
however, this squared effective index is modified by the difference between
the local permittivity and that of the reference slice, weighted by the local
intensity of the major component of the reference mode profile. Hence, con-
trary to the EIM, even in slices where no guided mode exists the effective
indices are still rigorously defined.

Note that the original problem (5.2.1) deals with six unknown field com-
ponents, each depending on three spatial coordinates. The present approx-
imation reduced it to a single function of two spatial coordinates only.

All other field components are related to PHx in the following manner
(5.4.33) - (5.4.36):
(

PEx , PEy , PEz

PHx , PHy , PHz

)

(y, z) =
iβr

k2εeff

(

0, ∂zP
Hx , −∂yP

Hx

(−i k2εeff/βr)P
Hx , ∂yP

Hx , ∂zP
Hx

)

.

(5.8.53)

Equation (5.8.53) permits a quite intuitive interpretation. Inside each ho-
mogeneous region a partial solution of (5.8.51) is

PHx(y, z) = c e−i (kyy + kzz), with k2
y + k2

z = k2εeff. (5.8.54)

If we define ρ2 = k2εeff, and an angle θ such that cos θ = kz/ρ and substitute
it in (5.8.53), we obtain

(

PEx , PEy , PEz

PHx , PHy , PHz

)

(y, z) =

= c
βr

ρ
e−i ρ(− sin θy + cos θz)

(

0, cos θ, sin θ
ρ/βr, − sin θ, cos θ

)

.

(5.8.55)
In the reference slice we have ρ = βr, and hence the functions P act

as a rotation of the slab mode around the x-axis. In all other regions, in
addition to the rotation of the y- and z-components, the x-component is
scaled by ρ/βr.

Moreover, as (5.8.55) is only a partial solution and the fundamental
solution of (5.8.51) is a superposition of partial solutions, the functions P
(5.8.53) act as a superposition of the slab mode χ rotated around the x-axis
by different angles θ.

5.8.2 TM polarization

Now we will take only one TM slab mode propagating in the direction z with
propagation constant βr from the reference slice r, which has permittivity
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distribution εr(x):
(

Ex, Ey, Ez

Hx, Hy, Hz

)

slab

(x, z) =

(

χEx(x), 0, χEz(x)
0, χHy(x), 0

)

· e−iβrz,

(5.8.56)
with function χHy satisfying the TM slab mode equation

(

1

εr(x)

(

χHy(x)
)′
)′

+ k2χHy(x) = βr
1

εr(x)
χHy(x). (5.8.57)

The vectorial field profile everywhere is written as
(

Ex, Ey, Ez

Hx, Hy, Hz

)

complete

(x, y, z) =

=

(

χEx(x)PEx(y, z), χEz(x)PEy(y, z), χEz(x)PEz(y, z)
0, χHy(x)PHy(y, z), χHy(x)PHz(y, z)

)

.

(5.8.58)
with some unknown functions P . Again the y and z components of the
electromagnetic field are approximated by the same functions χ.

Using the relations between the components of the slab mode χ one can
find from (5.4.23) that the function PEx satisfies the following second order
differential equation

(

∂y

1

ε1eff(y, z)
∂y + ∂z

1

ε1eff(y, z)
∂z + k2ε2(y, z)

)

PEx(y, z) = 0 (5.8.59)

with

ε1eff(y, z) =
β2

r

k2

∫

εr(x)(χEz(x))2 dx
∫

ε(x, y, z)(χEz(x))2 dx

+

+

∫

(χHy(x))2 dx
∫

1

εr(x)
(χHy(x))2 dx

∫

(ε(x, y, z)− εr(x))(χEz(x))2 dx
∫

ε(x, y, z)(χEz(x))2 dx

,

(5.8.60)

ε2(y, z) =

∫

ε(x, y, z)(χEx(x))2 dx
∫

εr(x)(χEx(x))2 dx

. (5.8.61)
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This does not look like a TE or TM Helmholtz equation as the permit-
tivity distribution appears both under the derivative sign and in front of the
term without any derivative. So here is one of the major differences with
the EIM. In the reference slice the relative permittivity is equal to that of
the reference slice (ε(x, y, z) = εr(x)) and hence the effective relative per-
mittivity ε1eff(y, z) = β2

r /k
2 is equal to the effective index squared of the

mode of the reference slice, and ε2(y, z) = 1. Again, contrary to the EIM,
even in slices where no guided mode exists, the effective indices are still
rigorously defined.

Now all the other field components can be related to the PEx in the
following manner

(

PEx , PEy , PEz

PHx , PHy , PHz

)

(y, z) =

=
iβr

k2ε1eff

(

(−i k2ε1eff/βr)P
Ex , ε−1

3 ∂yP
Ex , ε−1

3 ∂zP
Ex

0, ∂zP
Ex , −∂yP

Ex

)

,

(5.8.62)

where ε3(y) =

∫

ε(x, y, z)(χEz(x))2 dx
∫

εr(x)(χEz(x))2 dx
.

Next we will show what (5.8.62) means and how it acts on the slab mode
χ. One can show that inside each homogeneous region a partial solution of
(5.8.59) will be

PHx = c e−i (kyy + kzz), with k2
y + k2

z = k2ε1effε2. (5.8.63)

If we define ρ2 = k2ε1effε2 and angle θ such that cos θ = kz/ρ and substitute
it in (5.8.62) we get

(

PEx , PEy , PEz

PHx , PHy , PHz

)

(y, z) =

= c
βrε2

ρ
e−i ρ(− sin θy + cos θz)

(

ρ/βrε2, −ε−1
3 sin θ, ε−1

3 cos θ
0, cos θ, sin θ

)

.

(5.8.64)
It appears that in the reference slice, ρ = βr and ε3 = 1, and hence

functions P act as a rotation of a slab mode. In all the other slices in
addition to the rotation of all the y and z components of the slab mode, the
x component gets scaled by ρ/βrε2 and Ey and Ez by ε−1

3 .
Moreover, as (5.8.64) is only a partial solution of (5.8.59) and the funda-

mental solution of (5.8.59) is a superposition of partial solutions, the func-
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tions P (5.8.62) act as a superposition of the slab mode χ rotated around
the x-axis.

5.9 Numerical results

In this section we will validate the proposed method by means of simulations
on two examples. First, a simple straight silicon on insulator waveguide;
second, a photonic crystal slab waveguide.

To solve the system (5.4.23), (5.4.32) in the interior, as well as to calcu-
late the modes of the exterior, we use the commercial finite element pack-
age COMSOL. The calculation window looks as shown in Figure 5.2. The
procedure is as follows: First, the slab modes are calculated, either semi-
analytically or by means of finite elements, where at the boundaries in x
Perfectly Matched Layers are employed like in Chapter 4. Then, the finite
element equations are set up for the interior, and the resulting matrix equa-
tions (still assuming Neumann boundary conditions) are generated. Next,
the modes of the exterior are calculated, and the modifications to the finite
element matrices are applied to implement the transparent influx boundary
conditions. Finally, the matrix equation is solved and the resulting fields
are extracted and analyzed.

5.9.1 Silicon on insulator waveguide

The first example that we will consider is a straight silicon-on-insulator
waveguide; this simple structure is chosen to validate the method and to
show its consistency with respect to the mode solver procedures of Chap-
ter 3. Its geometry is shown in Figure 5.3. We will only consider input
into the fundamental TE mode, and will only use TE slab modes in the
expansion. We will examine the effects of the finite element grid size for the
situation with one slab mode in the expansion, and also observe the fields
with three modes in the expansion. All slab modes will be taken from the
waveguide core region.
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Figure 5.3: The silicon on insulator waveguide considered in this section. Its
width is 0.44

√
3µm and its thickness is 220nm. The wavelength considered

is 1.55µm. The refractive index of the silicon is taken to be
√

12.1, of the
silicon dioxide it is 1.445, and air has 1.0. Slab modes are calculated on a
window x ∈ [−1.3, 1.5]µm using 480 linear elements; the interior equations
are solved on a calculation window y ∈ [0, 8]µm, z ∈ [0, 8]µm (cf. Figs. 5.5
- 5.7).

When the finite element grid is refined, both the internal grid and the
grid on the boundary (and thus the exterior) change. Since the grid on the
exterior changes, the solutions and propagation constants of the modes of
the exterior change. Furthermore, inside the domain, the numerical disper-
sion of the finite element method also modifies the simulated propagation
constant. We measure the propagation constant in the interior by analyzing
the phase φ of PHx along the center of the waveguide; after observing that
along a section from y = a to y = b this phase decreases linearly with y,
the effective index can be calculated as

neff = −1

k

φ(b)− φ(a)

b− a
. (5.9.65)

Figure 5.4 shows the effective index of the exterior mode, as well as the
one calculated as in Equation (5.9.65), and a reference value obtained with
a commercial vectorial mode solver [10].

As the finite element mesh is refined, the numerical dispersion obviously
decreases and the interior propagation constant gets closer to the one in the
exterior. Naturally, they do not converge exactly to the commercial results
– as shown in Chapter 4, more modes are needed to reach that value.
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Figure 5.4: Effective index of the mode of the waveguide of Figure 5.3,
calculated by solving the finite element mode equation in the exterior (de-
noted ’exterior’), by measuring the calculated phase evolution in the wave-
guide (’interior’), and using a commercial Film Mode Matching algorithm
(’FMM’), versus the mesh size inside the waveguide on the boundary.
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Figure 5.5: Input mode profile and field at the right-hand side of the window
(z = 8µm) (left column), and a top view of |PHx

1 | (right column), for two
mesh sizes: in (a) the mesh size in the waveguide is about 109nm, while in
(b) it is about 54nm.
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Figure 5.6: Input mode profiles and fields at the right-hand side of the win-
dow (z = 8µm) (left column), and a top view of |PHx

j | (right column). The
mesh size inside the waveguide is approximately 109nm. For the sake of
visibility of the graphs, the right-hand pictures are all normalized to their
own maximum value.
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Figure 5.7: Input mode profiles and fields at the right-hand side of the win-
dow (z = 8µm) (left column), and a top view of |PHx

j | (right column). The
mesh size inside the waveguide is approximately 54nm. For the sake of vis-
ibility of the graphs, the right-hand pictures are all normalized to their own
maximum value.
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For the two coarsest meshes, plots of the exterior mode and the solution
on the right-hand boundary are shown in Figure 5.5, together with plots of
the absolute value of PHx

1 on the whole interior.

One can see that the field of the finer mesh is much smoother inside the
interior, and the field on the right-hand boundary is near indistinguishable
from the input mode – while the coarser mesh shows artefacts in the 2D
view, and the output field is not as similar to the input mode. The asym-
metry that is visible in the fields is caused by the mesh; COMSOL does not
create a symmetric mesh.

When using three TE modes in the expansion, all of them contribute to
the input mode, and they should thus all propagate through the waveguide
with the same propagation constant, while keeping their shape. Figure 5.6
and Figure 5.7 again show the shape of the coefficients of all three slab modes
PHx

j for the input mode and at the right-hand boundary of the calculation
window, as well as a graph of their absolute values in the whole window,
for two mesh sizes.

Also with three modes in the expansion, the mode propagates with ap-
proximately the same effective index as with one mode; more vertical profiles
would be needed to obtain results closer to the reference effective index. All
three slab modes propagate with propagation constants that are well within
1% of each other. Similar to what was seen with one mode in the expan-
sion, the mode field deforms somewhat during propagation for the coarser
mesh; on the finer mesh, the fields at the right-hand boundary are virtually
identical to the mode that was launched from the left-hand boundary.

5.9.2 Photonic crystal slab waveguide

In this section we calculate the transmission spectrum of the structure shown
in Figure 5.8. First with only a single mode in the expansion, and then with
more modes to account for radiation losses. The results are compared with
3D FDTD [23] simulations.
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1 mode in expansion

One reason why it is interesting to apply our method to this structure is the
fact that no guided mode exists in the vertical slices, where holes are located.
So to apply ‘standard’ EIM one has to guess the effective refractive index
of those regions: should it be the refractive index of the SiO2 substrate, or
of air, or something in between? VEIM, with one mode in the expansion,
uniquely defines these numbers.

Figure 5.8: Photonic crystal slab waveguide. The structure is composed of
a 220nm thick Si (nSi =

√
12.1) layer on top of a SiO2 (nSiO2 = 1.445)

substrate with air (nair = 1.0) around. The waveguide and holes are defined
by etching fully through the Si layer. The triangular lattice photonic crys-
tal with lattice constant a = 440nm consists of circular holes with radius
135nm; the input and output waveguides are

√
3a ≈ 762nm wide. A de-

fect waveguide is created by removing a row of holes and enlarging the first
row of holes on either side to a radius of 170nm. In total, there are four
rows of holes on either side of the defect waveguide. The calculation window
y ∈ [0, 8]µm, z ∈ [0, 10.635]µm is discretized into 266880 linear triangular
finite elements.

Since the slab mode we will use in the expansion is a guided mode,
we do not use PMLs in this simulation. Furthermore, instead of applying
finite elements in the x-direction, the slab modes are calculated by a semi-
analytical mode solver, which also provides semi-analytical overlap integrals
[65].
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Figure 5.9: Transmission spectrum of the photonic crystal waveguide shown
in Figure 5.8. The curves labeled ‘EIM’ use the Effective Index Method with
the given effective permittivity for the hole regions; the corresponding values
in the equations for VEIM vary as a function of the wavelength between the
given values. The reference FDTD data is generated using [23].

As shown in Figure 5.9, the VEIM predictions of the location of the
stopband and the general spectral features are reasonably close to the 3D
FDTD reference results, while the ‘conventional’ EIM data, using either the
cladding (1.0) or substrate refractive indices (1.445) as effective values for
the hole regions, are much further off. Note that the effective permittivity
(5.8.52) can very well turn out to be negative, as it happens to be in the
present example. Inside the hole regions the effective permittivity varies
between −0.887@λ=1.3µm and −1.145@λ=1.9µm. So in all air regions in Fig-
ure 5.10 the field PHx decays exponentially. This figure shows plots of |PHx|
at the wavelengths denoted by the circles in the spectrum of Figure 5.9.

By combining the values of PHx(y, z) with the slab mode field for Hx,
the three-dimensional (semi-)vectorial field may be reconstructed, as demon-
strated in Table 5.1.
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Figure 5.10: Light propagation through the photonic crystal slab waveguide
of Figure 5.8 at several vacuum wavelengths; absolute value of PHx.
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PHx(y, z) · XHx(x) = Hx(x, y, z)
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Table 5.1: Reconstruction of the 3D field profile at two wavelengths.

3 TE modes in expansion

The slab waveguide, in which we calculate the slab modes used in the ex-
pansion, does not support more than one guided TE mode. Therefore, any
additional modes that we add to the expansion will be modes that are not
guided and that should, thus, be leaky. In the calculations of the slab modes
we therefore utilize 0.5µm thick PMLs at the boundaries of the computa-
tional domain in the x-direction, in exactly the same way as in Chapter 4.
σmax, as defined in the same chapter, is taken to be 1.2. Also the same
finite element slab mode solver is applied, taking 272 linear elements on the
computational window x ∈ [−3, 3.2]µm. We take the three highest order
modes into the expansion, and calculate on the same mesh as before. We
add 1 × 1µm squares of PML with strength σ = 0.5 in all four corners of
the window in the (y, z)-plane, and extending into the exterior, to absorb
radiation hitting the corners. Figure 5.11 shows how the spectrum of the
device is changed by the addition of modes.

The addition of the extra modes does not appear to shift the spectrum
much, but their main effect is to decrease the transmission due to light being
coupled into the higher order slab modes, which may radiate away and be
absorbed by the PMLs. Figure 5.12 shows the coefficients of all three modes
in the y-z plane.
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Figure 5.11: Left: Calculated spectrum with 1 mode (VEIM1) or 3 modes
(VEIM3) in the expansion – both using slab modes calculated with 272 finite
elements in the expansion. Note that the spectrum is shifted slightly with
respect to Figure 5.9 due to the difference between these numerically cal-
culated slab modes and the semi-analytic modes used in Figure 5.9. Right:
Absolute value of the Hx field in two cross-sections; top: y-z plane in the
center of the silicon layer; bottom: x-z plane in the center of the waveguide

Figure 5.12: Absolute value of the coefficients of the three modes involved
in the results shown in Figure 5.11.
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5.10 Conclusions

By means of an expansion over TE and TM slab modes in one direction,
the dimensionality of vectorial 3D scattering problems has been reduced.
A Finite Element Method solves the resulting system of 2D equations; the
boundaries of the calculation window are made to be transparent to out-
going light using modified Transparent Influx Boundary Conditions. PMLs
at the top and bottom of the window absorb vertically scattered radiation.

The method is validated by means of a straight silicon-on-insulator wave-
guide example; subsequently, it is applied to a photonic crystal waveguide.
We demonstrated that in case of the photonic crystal waveguide the cur-
rent method with one mode in the expansion predicts the bandgap and
other spectral features much more precisely than a standard Effective In-
dex Method, at more or less the same computational cost. More modes in
the expansion allow radiation loss to be taken into account.

While the current method is in principle suitable for general, slab-like
non-uniform structures, our approach could be applied in a different way
to structures that mainly consist of sections that are invariant in the z-
direction. The field at each z-position can be expanded in the vector com-
ponents of 2D modes of one reference (x, y)-cross-section; the resulting set
of coupled 1D equations could be solved in a similar way as described in
Chapter 4. Such an algorithm would be comparable to a 3D Bidirectional
Eigenmode Propagation (BEP) method, with the distinct advantages that
modes only need to be calculated on one cross-section, and that the continu-
ity conditions of the fields between sections would be satisfied automatically.

There may be yet another approach to the 3D scattering problem. In
the results of the present method we observed that the system of partial
differential equations of the reduced problem decouples in the reference slice.
Thus, if we use a set of local slab modes in the expansion in each distinct
region, the system of equations may be decoupled everywhere, except on the
interfaces between regions. On those interfaces, continuity conditions couple
the solutions in the two regions. Such largely decoupled systems should be
cheap to solve; in the finite element method, the matrices will be much more
sparse. Since the solution in each region is essentially just a superposition of
rotated slab modes, such a method could be seen as an analogue of the Film
Mode Matching mode solving method, where the solution on each uniform
slice is also represented as a superposition of rotated slab modes, which
couple at interfaces between slices.
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Conclusions and recommendations

Concluding remarks

During this work we developed and implemented global eigenmode expan-
sion methods for a large variety of problems: scalar and vectorial mode
solvers, as well as 2- and fully 3-D scattering problems. All methods are
based on the expansion of the field along one spatial direction in the slab
modes of some reference slice(s); a variational procedure is used to derive
the equations in the other spatial direction(s). In the mode solvers, both fi-
nite element and semi-analytical techniques were used to solve the resulting
equations; for the scattering problems, only finite element implementations
have been created.

When searching for guided modes, the fields decay toward infinity, so
no special boundary conditions are needed. However, in scattering prob-
lems light must be able to leave the calculation window unimpeded, and it
needs to be possible to prescribe influx from outside the window. Therefore
we developed advanced boundary conditions, which are a combination of
Perfectly Matched Layers (PMLs) and Transparent Influx Boundary Con-
ditions (TIBCs). PMLs allow the method to correctly model structures with
radiation losses, whereas without them, this radiation would reflect off the
hard boundary walls and disturb the results. However, while PMLs work
very well as absorbers, prescribing influx is not trivial. Therefore, we took
the concept of TIBCs, which allow radiation to leave the window while also
allowing influx to be prescribed, and extended them to the present mode
expansion method.

The scalar and vectorial mode solvers were implemented in our own C++
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programs. Results from comparisons with benchmark problems, including
both piecewise constant channel waveguides and diffused waveguides, show
that the present method can provide very accurate results even with only a
few modes in the expansion, and that it converges to the benchmark results
if the number of modes in the expansion is increased.

We implemented numerical techniques for scattering problems in COM-
SOL Multiphysics – a package that employs an advanced finite element
method. An influx is defined in terms of amplitudes of incoming modes and
implemented by modifying the standard boundary conditions of COMSOL.
Since the method can be applied to a wide range of geometries, the current
approach is a valuable option for fully vectorial 3D simulations. Results
from the scattering solvers on several structures, like Bragg gratings, ta-
pers, and photonic crystal slabs, have been compared to reference results
obtained by Finite Difference Time Domain (FDTD). Also here, we find
good results with a few modes in the expansion, while more modes make
the results converge toward the reference results.

The examples have shown that, on the one hand, while the method with
only one or a few modes in the expansion gives a rather crude approximation
to the optical field, it still in most cases performs much better than the
standard Effective Index approach, on the other hand it can be used for
rigorous computations by expanding the field over multiple vertical slab
modes.

Outlook

There are several topics that could be the subject of further work and ex-
tensions to the current programs.

One extension, which is especially relevant for plasmonic structures, is
the ability to handle metals and other lossy materials. An advantage of
frequency domain solvers compared to time domain solvers is the fact that
the high dispersion that metals exhibit is automatically covered. Moreover,
all expressions, i.e. the functional, overlap integrals etc. already apply to
metallic structures.

The presented mode solvers can be extended to also deal with radia-
tion loss (leaky modes) by e.g. surrounding the computational window with
PMLs. This does, however, complicate the search for propagation constants,
since they will lie in the complex plane and no longer on the real or imagi-
nary axis. Furthermore, nonphysical modes whose power is localized in the



123

PMLs may be erroneously found.
There is also a possibility to extend the current method to deal with

anisotropic materials, since the functionals for vectorial fields are also valid
in this case.

The present 3D scattering method can be extended to solve the band
structure of photonic crystal slabs – where instead of fixing the Bloch vector
and solving for the frequency, as is done on many current algorithms, one
would fix the frequency and solve for Bloch vectors.

In the conclusions of Chapter 5, two alternative approaches to tackle
the 3D scattering problem were identified. In one, an expansion in 2D
modes would be used in what can be considered a 3D to 1D dimensionality
reduction, as an alternative to 3D Bidirectional Eigenmode Propagation
methods. In the other approach, the field in each distinct region would be
expanded in local slab modes, which then only couple on interfaces between
regions; this approach can be considered a 3D generalization of the well-
known Film Mode Matching mode solving method.

Another important issue is the accuracy of the current approximations.
While in this thesis we did not do more analysis than just to observe the
convergence of our results with respect to external benchmark results, it
would be very useful if there would be an algorithm that would, for example,
determine how many and which modes are needed in the expansion to obtain
a given accuracy for a certain field parameter.

On the basis of these suggestions the flexibility and possible application
domains of the present methods could be increased even further, leading
to a broad set of tools to support the design of current and novel optical
devices.
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Summary

This thesis describes a new set of methods for the simulation of light propa-
gation in photonic structures – in other words, methods to solve Maxwell’s
equations in optical chips. Due to common fabrication technologies, the
light in optical chips is made to mainly propagate along the directions par-
allel to the initial substrate. We use this knowledge to develop a formalism
which expands the field in the direction perpendicular to the substrate in
a set of basis fields. Typically these basis fields are modes that are sup-
ported by one or more vertical cross-sections. Given those basis fields, a
variational method is applied to obtain the equations for the coefficients
of the slab modes, or components thereof, in the plane of the substrate.
In such a way, the dimensionality of the problem is reduced: Instead of a
three (two) dimensional problem, a set of coupled two (one) dimensional
problems need to be solved. Contrary to other well-known methods like the
Effective Index Method or Mode Matching Methods, the same expansion is
used everywhere in the structure – which ensures continuity of the relevant
components.

Four important classes of problems are chosen, all of which are subjected
to the treatment described above. These four problems are scalar mode
solving, vectorial mode solving, 2D scattering, and 3D scattering problems.

If the refractive index contrast is low, implying that certain derivatives of
the index can be neglected, a scalar mode equation can be derived. Solutions
of this equation describe modes running along a waveguide with a certain
propagation constant. Slab modes of one or more cross-sections are used



to expand the field vertically. A semi-analytical solution method for the
resulting set of 1D equations yields result that were compared with several
other methods on various waveguide geometries. Somewhat remarkably,
the comparison indicates that a reasonable accuracy in the computation of
propagation constants can be achieved with rather few (sometimes: single)
modes in the field expansion. No problem arises, if one of the constituting
slices is below cut-off.

For the vectorial mode problem, the full Maxwell’s equations are solved;
all six electromagnetic vector field components are taken into account. Mode
expansion in the vertical direction is combined with a variational formalism
to obtain the equations in the horizontal direction, which are solved by
means of either semi-analytic methods, or, for more complicated geometries,
a finite element method. The method gives rather accurate estimates of
the propagation constants, sometimes even with only a few terms in the
expansion. The vectorial mode solver is applied to several structures and
compared to reference results, and shows competitive performance. It turns
out that if only one mode is used in the expansion, the method can be
seen as an improved Effective Index Method, in which the coefficients are
uniquely defined everywhere, even if no guided modes exist locally. While
in the Film Mode Matching method, rotated modes of each slice are used
to locally expand the field, our vectorial mode solver uses only one set
of modes everywhere. We show that in the reference slice, where the 1D
modes are calculated, we predict exactly the same rotations as the Film
Mode Matching method uses. In the reference slice the total field profile
is a superposition of these rotated 1D TE and TM modes; in other slices,
however, the components of all the 1D modes mix.

In 2D scattering problems, the Maxwell’s equations reduce to a TE
or TM Helmholtz equation. In order to allow light to leave the structure
vertically, we apply layers of artificial absorbing material, so-called Perfectly
Matched Layers, at the top and bottom of the calculation window. The
field is then expanded in slab modes of one or more reference slices. The
resulting system of 1D differential equations is solved by means of a Finite
Element Method. At the left and right edges of the computational window,
boundary conditions are set up that allow influx to be prescribed, while
allowing outgoing radiation to freely cross the boundary. The method is
applied to grating and taper structures. As in a standard Effective Index
Method (though with less heuristics involved), rough approximations can
be obtained through expansions with one or only very few terms, at very



low computational cost. In an intermediate regime already quite acceptable
results emerge with only a very moderate number of expansion terms, as
shown in some of our examples. Our calculations with a larger number of
basis modes yield converged results, just as the established Bidirectional
Eigenmode Propagation (BEP) schemes. Contrary to the BEP method,
however, our solutions are continuous everywhere.

Finally, the 3D scattering problem involves solving the full vectorial
Maxwell’s equations. Again, the solution is globally expanded in vertical
slab modes, and the equations in the other two directions are solved using
a Finite Element Method. The boundaries of the computational window
are made to be transparent for outgoing radiation by means of Transparent
Influx Boundary Conditions, which utilize an expansion of the field of the
exterior in modes, calculated by the algorithm of the 2D vectorial mode
solver described above. Simulations on a straight dielectric waveguide give
a first validation of the method, and results on a photonic crystal slab
waveguide show that we can predict the location of the bandgap and other
spectral features much more precisely than any ’standard’ Effective Index
Method.





Samenvatting

Dit proefschrift beschrijft een aantal nieuwe methodes voor het simuleren
van de voortplanting van licht in fotonische strukturen – in andere woor-
den, methodes voor het oplossen van de Maxwellvergelijkingen in optische
chips. De gebruikelijke fabricage-technologie zorgt ervoor dat het licht in
optische chips zich voornamelijk voortbeweegt in richtingen parallel aan het
substraat. Wij gebruiken deze kennis om een formalisme te ontwikkelen dat
het veld in de richting loodrecht op op het substraat in een set basisvelden
ontwikkelt. Deze basisvelden zijn typisch golfgeleidermodes van één of meer
vertikale doorsnedes, zogenaamde ’slab modes’. Gegeven die basisvelden,
wordt een variationele methode toegepast om de vergelijkingen voor de co-
efficiënten van de slab modes, of van hun vectorcomponenten, in het vlak
van het substraat te verkrijgen. Op zo’n manier wordt de dimensionaliteit
van het probleem gereduceerd: In plaats van een drie-(twee-)dimensionaal
probleem moet een set van gekoppelde twee-(één-)dimensionale problemen
worden opgelost. In tegenstelling tot andere bekende methodes zoals de
Effectieve Index Methode of Mode Matching Methodes, wordt dezelfde ont-
wikkeling overal in de struktuur gebruikt – wat zorg draagt voor de con-
tinüıteit van de relevante componenten.

Er zijn vier belangrijke klasses problemen gekozen, die alle aan de be-
handeling zoals hierboven besproken zijn blootgesteld. Deze vier problemen
zijn het bepalen van scalaire modes, het bepalen van vectoriële modes, en
2D en 3D verstrooïıngsproblemen.

Wanneer het brekingsindexcontrast laag is, wat impliceert dat bepaalde



afgeleiden van de index verwaarloosd kunnen worden, kan een scalaire mode-
vergelijking worden afgeleid. Oplossingen van deze vergelijking beschrijven
modes die zich door een golfgeleider voortplanten met een bepaalde propa-
gatieconstante. Slab modes van één of meer doorsnedes worden gebruikt
om het veld vertikaal in te ontwikkelen. Een semi-analytische oplossings-
methode voor de resulterende set 1D vergelijkingen levert resultaten die
vergeleken zijn met meerdere andere methodes, op verschillende golfgelei-
dergeometrieën. Enigszins opmerkelijk geeft de vergelijking aan dat er al
een redelijke nauwkeurigheid bereikt kan worden in de berekening van pro-
pagatieconstantes met nogal weinig (soms: slechts één) modes in de veld-
ontwikkeling. Er ontstaat geen probleem als één van de doorsnedes geen
geleide mode ondersteunt.

Voor het vectoriële mode-probleem worden de volledige Maxwellvergelij-
kingen opgelost; alle zes electromagnetische vectorveldcomponenten moeten
meegenomen worden. Een ontwikkeling in modes in de vertikale richting
wordt gecombineerd met een variationeel formalisme om de vergelijkingen
in de horizontale richting te verkrijgen, welke opgelost worden met behulp
van semi-analytische methodes, of, voor ingewikkeldere geometrieën, een
Eindige Elementen Methode. De methode geeft tamelijk nauwkeurige be-
naderingen van de propagatieconstantes, soms zelfs met slechts een paar
termen in de ontwikkeling. De vectoriële mode solver wordt toegepast op
verscheidene strukturen en vergeleken met referentieresultaten, en zet con-
curerende prestaties neer. Het blijkt dat in het geval dat slechts één mode
wordt gebruikt in de ontwikkeling, de methode gezien kan worden als een
verbeterde Effective Index Methode, waarin de coefficiënten overal uniek
gedefinieerd zijn, zals als er lokaal geen geleide modes bestaan. Waar in
de Film Mode Matching methode geroteerde modes van iedere doorsnede
worden gebruikt om het veld lokaal te ontwikkelen, gebruikt onze mode
solver slechts één set modes in het hele domain. Wij laten zien dat we in de
referentie-doorsnede, waat de 1D modes worden uitgerekend, exact dezelfde
rotaties voorspellen als in de Film Mode Matching methode worden ge-
bruikt. In de referentie-doorsnede is het totale veldprofiel een superpositie
van die geroteerde 1D TE en TM modes; echter, in andere doorsnedes wor-
den de componenten van alle 1D modes gemengd.

In 2D verstrooïıngsproblemen reduceren de Maxwellvergelijkingen tot
een TE of TM Helmholtzvergelijking. Om het mogelijk te maken dat licht
de struktuur in vertikale richting verlaat, passen we lagen van kunstma-
tig absorberend materiaal, zogenaamde Perfectly Matched Layers, toe aan



de boven- en onderkant van het rekenvenster. Het veld wordt dan ontwik-
keld in slab modes van één of meer referentiedoorsnedes. Het resulterende
systeem 1D differentiaalvergelijkingen wordt opgelost met behulp van een
Eindige Elementen Methode. Aan de linker- en rechterrand van het reken-
venster worden randvoorwaarden gëımplementeerd die het mogelijk maken
een inkomend veld voor te schrijven, terwijl uitgaande straling de rand vrij-
elijk kan passeren. De methode wordt toegepast op tralie- en taperstruk-
turen. Net als in een standaard Effectieve Index Method (maar met minder
heuristiek) kunnen ruwe benaderingen worden behaald middels ontwikke-
lingen in slechts één of een paar termen, tegen zeer lage rekenkosten. In
een tussenliggend gebied komen al behoorlijk acceptabele resultaten naar
voren met slechts een matig aantal ontwikkelingstermen, zoals in sommige
van onze voorbeelden te zien is. Onze berekeningen met een groter aantal
basismodes leveren geconvergeerde resultaten, net als de gevestigde Bidi-
rectionele Eigenmode Propagatie (BEP) schema’s. In tegenstelling tot de
BEP methode zijn onze oplossingen echter wel overal continu.

Voor het 3D verstrooïıngsprobleem dienen de volledige vectoriële
Maxwellvergelijkingen opgelost te worden. Wederom wordt de oplossing
globaal ontwikkeld in vertikale slab modes, en de vergelijkingen in de an-
dere twee richtingen worden opgelost met behulp van een Eindige Elementen
Methode. De randen van het rekenvenster worden transparant gemaakt
voor uitgaande straling door Transparante Influx Randvoorwaarden, die
gebruik maken van een ontwikkeling van het veld in het buitengebied in
modes, uitgerekend met behulp van het algoritme van onze 2D vectoriële
mode solver. Simulaties aan een rechte diëlectrische golfgeleider geven een
eerste validatie van de methode, en resultaten aan een fotonisch kristal slab
golfgeleider laten zien dat we de plaats van de bandgap en andere spectrale
eigenschappen veel nauwkeuriger kunnen voorspellen dan welke ’standaard’
effectieve index method dan ook.
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